Skip to main content
Log in

An Additive Hazards Model for Clustered Recurrent Gap Times

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In this article, clustered recurrent gap time is investigated. A marginal additive hazards model is proposed without specifying the association of the individuals within the same cluster. The relationship among the gap times for the same individual is also left unspecified. An estimating equation-based inference procedure is developed for the model parameters, and the asymptotic properties of the resulting estimators are established. In addition, a lack-of-fit test is presented to assess the adequacy of the model. The finite sample behavior of the proposed estimators is evaluated through simulation studies, and an application to a clinic study on chronic granulomatous disease (CGD) is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gail M H, Santner T J, and Brown C C, An analysis of comparative carcinogenesis experiments based on multiple times to tumor, Biometrics, 1980, 36: 255–266.

    Article  MathSciNet  MATH  Google Scholar 

  2. Huang Y and Chen Y Q, Marginal regression of gaps between recurrent events, Lifetime Data Analysis, 2003, 9: 293–303.

    Article  MathSciNet  MATH  Google Scholar 

  3. Schaubel D E and Cai J, Regression analysis for gap time hazard functions of sequentially ordered multiplivariate failure time data, Biometrika, 2004, 91: 291–303.

    Article  MathSciNet  MATH  Google Scholar 

  4. Strawderman R L, The accelerated gap times model, Biometrika, 2005, 92: 1299–1315.

    Article  MathSciNet  MATH  Google Scholar 

  5. Luo X and Huang C Y, Analysis of recurrent gap time data using the weighted risk-set method and the modified within-cluster resampling method, Statistics in Medicine, 2011, 30: 301–311.

    Article  MathSciNet  Google Scholar 

  6. Darlington G A and Dixon S N, Event-weighted proportional hazards modelling for recurrent gap time data, Statistics in Medicine, 2013, 32: 124–130.

    Article  MathSciNet  Google Scholar 

  7. Chang S H, Estimating marginal effects in accelerated failure time models for serial sojourn among repeated event, Lifetime Data Analysis, 2004, 10: 175–190.

    Article  MathSciNet  MATH  Google Scholar 

  8. Sun L, Park D H, and Sun J, The additive hazards model for recurrent gap times, Statistica Sinica, 2006, 16: 919–932.

    MathSciNet  MATH  Google Scholar 

  9. Lin D Y, Sun W, and Ying Z, Nonparametric estimation of the gap time distribution for serial events with censored data, Biometrika, 1999, 86: 59–70.

    Article  MathSciNet  MATH  Google Scholar 

  10. Wang M C and Chang S H, Nonparametric estimation of a recurrent survival function, Journal of the American Statistical Association, 1999, 94: 146–153.

    Article  MathSciNet  MATH  Google Scholar 

  11. Peffna E A, Strawderman R, and Hollander M, Nonparametric estimation with recurrent event data, Journal of the American Statistical Association, 2001, 96: 1299–1315.

    Article  MathSciNet  MATH  Google Scholar 

  12. Du P, Nonparametric modeling of the gap time in recurrent event data, Lifetime Data Analysis, 2009, 15: 256–277.

    Article  MathSciNet  MATH  Google Scholar 

  13. Cai T, Wei L, and Wilcox M, Semiparametric regression analysis for clustered failure time data, Biometrika, 2000, 87: 867–878.

    Article  MathSciNet  MATH  Google Scholar 

  14. Lu S and Wang M, Marginal analysis for clustered failure time data, Lifetime Data Analysis, 2005, 11: 61–79.

    Article  MathSciNet  MATH  Google Scholar 

  15. Cai T, Cheng S, and Wei L, Semiparametric mixed-effects models for clustered failure time data, Journal of the American Statistical Association, 2002, 97: 514–522.

    Article  MathSciNet  MATH  Google Scholar 

  16. Cai J and Zeng D, Additive mixed effect model for clustered failure time data, Biometrics, 2011, 67: 1340–1351.

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu Z, Lin X, and Tu W, Semiparametric frailty models for clustered failure time data, Biometrics, 2012, 68: 429–436.

    Article  MathSciNet  MATH  Google Scholar 

  18. Gauran I and Barrios E, Nonparametric model of clustered customer survival data, Communications in Statistics-Simulation and Computation, 2017, 46: 603–618.

    Article  MathSciNet  MATH  Google Scholar 

  19. Chen L, Feng Y, and Sun J, Regression analysis of clustered failure time data with informative cluster size under the additive transformation models, Lifetime Data Analysis, 2017, 23(4): 651–670.

    Article  MathSciNet  MATH  Google Scholar 

  20. Chiou S, Kang S, and Yan J, Semiparametric accelerated failure time modeling for clustered failure times from stratified sampling, Journal of the American Statistical Association, 2015, 110: 621–629.

    Article  MathSciNet  MATH  Google Scholar 

  21. Schaubel D and Cai J, Analysis of clustered recurrent event data with application to hospitalization rates among renal failure patients, Biostatistics, 2005, 6: 404–419.

    Article  MATH  Google Scholar 

  22. He S, Wang F, and Sun L, A semiparametric additive rates model for clustered recurrent event data, Acta Mathematicae Applicatae Sinica, 2003, 29: 55–62.

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu D, Schaubel D E, and Kalbfleisch J D, Computationally efficient marginal models for clustered recurrent event data, Biometrics, 2012, 68: 637–647.

    Article  MathSciNet  MATH  Google Scholar 

  24. Liang K Y and Zeger S L, Longitudinal data analysis using generalized linear models, Biometrika, 1986, 73: 13–22.

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin D Y, Wei L J, Yang L, et al., Semiparametric regression for the mean and rate function of recurrent events, Journal of the Royal Statistical Society, Series B, 2000, 69: 711–730.

    Article  MathSciNet  MATH  Google Scholar 

  26. Fleming T R and Harrington D P, Counting Processes and Survival Analysis, Wiley, New York, 1991.

    MATH  Google Scholar 

  27. Sun L, Tong X, and Zhou X, A class of Box-Cox transformation models for recurrent event data, Lifetime Data Analysis, 2011, 17: 280–301.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangyuan Kang.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11501037, 11771431, and 11690015.

This paper was recommended for publication by Editor YU Zhangsheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, F., Sun, L. & Cheng, X. An Additive Hazards Model for Clustered Recurrent Gap Times. J Syst Sci Complex 31, 1377–1390 (2018). https://doi.org/10.1007/s11424-018-6329-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-018-6329-3

Keywords

Navigation