Skip to main content
Log in

Adaptive Numerical Approach for Optimal Control of a Single Train

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper considers the optimal control problem of a single train, which is formulated as an optimal control problem of nonlinear systems with switching controller. The switching sequence and the switching time are decision variables to be chosen optimally. Generally speaking, it is very difficult to solve this problem analytically due to its nonlinear nature, the complexity of the controller, and the existence of system state and control input constraints. To obtain the numerical solution, by introducing binary functions for every value of the control input, relaxing the binary functions, and imposing a penalty function on the relaxation, the problem is transformed into a parameter optimization problem, which can be efficiently solved by using any gradient-based numerical approach. Then, the authors propose an adaptive numerical approach to solve this problem. Convergence results indicate that any optimal solution of the parameter optimization problem is also an optimal solution of the original problem. Finally, an optimal control problem of a single train illustrates that the adaptive numerical approach proposed by us is less time-consuming and obtains a better cost function value than the existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khmelnitsky E, On an optimal control problem of train operation, IEEE Trans. Autom. Control, 2000, 45: 1257–1266.

    Article  MathSciNet  MATH  Google Scholar 

  2. Howlett P, The optimal control of a train, Ann. Oper. Res., 2000, 98: 65–87.

    Article  MathSciNet  MATH  Google Scholar 

  3. Howlett P, An optimal strategy for the control of a train, J. Aust. Math. Soc. Ser. B. Appl. Math., 1990, 31: 454–471.

    Article  MathSciNet  MATH  Google Scholar 

  4. Howlett P G, Milroy I P, and Pudney P J, Energy-efficient train control, Control Engi. Pract., 1994, 2: 193–200.

    Article  Google Scholar 

  5. Howlett P G, Pudney P J, and Vu X, Local energy minimization in optimal train control, Automatica, 2009, 45: 2692–2698.

    Article  MathSciNet  MATH  Google Scholar 

  6. Su S, Li X, Tang T, et al., A subway train timetable optimization approach based on energy-efficient operation strategy, IEEE Trans. Intell. Transport. Syst., 2013, 14: 883–893.

    Article  Google Scholar 

  7. Albrecht A R, Howlett P G, Pudney P J, et al., Energy-efficient train control: From local convexity to global optimization and uniqueness, Automatica, 2013, 49: 3072–3078.

    Article  MathSciNet  MATH  Google Scholar 

  8. Li X and Lo H K, Energy minimization in dynamic train scheduling and control for metro rail operations, Transport. Res. B Meth., 2014, 70: 269–284.

    Article  Google Scholar 

  9. Su S, Tang T, and Roberts C, A cooperative train control model for energy saving, IEEE Trans. Intell. Transporta. Syst., 2015, 16: 622–631.

    Article  Google Scholar 

  10. Li S, De Schutter B, Yang L, et al., Robust model predictive control for train regulation in underground railway transportation, IEEE Trans. Control Syst. Technol., 2016, 24: 1075–1083.

    Article  Google Scholar 

  11. Ye H and Liu R, A multiphase optimal control method for multi-train control and scheduling on railway lines, Transport. Res. B Meth., 2016, 93: 377–393.

    Article  Google Scholar 

  12. Scheepmaker G M, Goverde R M, and Kroon L G, Review of energy-efficient train control and timetabling, Eur. J. Oper. Res., 2017, 257: 355–376.

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu X, Lei B, Zhang K, et al., Hybrid stochastic optimization method for optimal control problems of chemical processes, Chem. Eng. Res. Design, 2017, 126: 297–310.

    Article  Google Scholar 

  14. Liu D and Wei Q, Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems, IEEE Trans. Cybern., 2013, 43: 779–789.

    Article  Google Scholar 

  15. Wu X, Zhang K, and Cheng M, Computational method for optimal control of switched systems with input and state constraints, Nonlinear Anal. Hybrid Syst., 2017, 26: 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kirk D E, Optimal Control Theory: An Introduction, Courier Corporation, New York, 2012.

    Google Scholar 

  17. Wu S and Shu L, Maximum principle for partially-observed optimal control problems of stochastic delay systems, Journal of Systems Science & Complexity, 2017, 30(2): 316–328.

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang Y and Jiang Z P, Global adaptive dynamic programming for continuous-time nonlinear systems, IEEE Trans. Autom. Control, 2015, 60: 2917–2929.

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu X, Liu Q, Zhang K, et al., Optimal switching control for drug therapy process in cancer chemotherapy, Eur. J. Control, 2018, DOI: https://doi.org/10.1016/j.ejcon.2018.02.004.

  20. Wu X, Zhang K, and Cheng M, Optimal control of bioprocess systems using hybrid numerical optimization algorithms, Optimization, 2018, DOI: https://doi.org/10.1080/02331934.2018.1466299.

  21. Aseev S M and Kryazhimskiy A V, The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons, SIAM J. Control Optim., 2004, 43: 1094–1119.

    Article  MathSciNet  MATH  Google Scholar 

  22. Wei Q, Liu D, and Lin H, Value iteration adaptive dynamic programming for optimal control of discrete-time nonlinear systems. IEEE Trans. Cybern., 2016, 46: 840–853.

    Article  Google Scholar 

  23. Liu R and Li S, Suboptimal integral sliding mode controller design for a class of affine systems, J. Optim. Theory Appl., 2014, 161: 877–904.

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo B Z and Wu T T, Numerical solution to optimal feedback control by dynamic programming approach: A local approximation algorithm, Journal of Systems Science & Complexity, 2017, 30(2): 782–802.

    Article  MathSciNet  MATH  Google Scholar 

  25. Karuppiah R and Grossmann I E, Global optimization for the synthesis of integrated water systems in chemical processes, Comput. Chem. Eng., 2006, 30: 650–673.

    Article  Google Scholar 

  26. Banga J R, Balsa-Canto E, Moles C G, et al., Dynamic optimization of bioprocesses: Efficient and robust numerical strategies, J. Biotechnol., 2005, 117: 407–419.

    Article  Google Scholar 

  27. Xu X and Antsaklis P J, Optimal control of switched systems via non-linear optimization based on direct differentiations of value functions, Int. J. Control, 2002, 75: 1406–1426.

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu X and Antsaklis P J, Optimal control of switched systems based on parameterization of the switching instants, IEEE Trans. Auto. Control, 2004, 49: 2–16.

    Article  MathSciNet  MATH  Google Scholar 

  29. Sager S, Bock H G, and Diehl M, The integer approximation error in mixed-integer optimal control, Math. Program., 2012, 133: 1–23.

    Article  MathSciNet  MATH  Google Scholar 

  30. Hante F M and Sager S, Relaxation methods for mixed-integer optimal control of partial differential equations, Comput. Optim. Appl., 2013, 55: 197–225.

    Article  MathSciNet  MATH  Google Scholar 

  31. Sager S, Claeys M, and Messine F, Efficient upper and lower bounds for global mixed-integer optimal control, J. Global Optim., 2015, 61: 721–743.

    Article  MathSciNet  MATH  Google Scholar 

  32. Moehle N and Boyd S, A perspective-based convex relaxation for switched-affine optimal control, Syst. Control Lett., 2015, 86: 34–40.

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu X, Zhang K, and Sun C, Parameter tuning of multi-proportional-integral-derivative controllers based on optimal switching algorithms, J. Optim. Theory Appl., 2013, 159: 454–472.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu X, Zhang K, and Sun C, Constrained optimal control of switched systems based on modified BFGS algorithm and filled function method, Int. J. Comput. Math., 2014, 91: 1713–1729.

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu X and Zhang K, Three-dimensional trajectory design for horizontal well based on optimal switching algorithms, ISA Trans., 2015, 58: 348–356.

    Article  Google Scholar 

  36. Wu X, Zhang K, and Cheng M, Computational method for optimal machine scheduling problem with maintenance and production, Int. J. Prod. Res., 2017, 55: 1791–1814.

    Article  Google Scholar 

  37. Wu X, Zhang K, and Sun C, Numerical algorithm for a class of constrained optimal control problems of switched systems, Numer. Algorithms, 2014, 67: 771–792.

    Article  MathSciNet  MATH  Google Scholar 

  38. Howlett P, Optimal strategies for the control of a train, Automatica, 1996, 32: 519–532.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wu.

Additional information

This work was supported by the Chinese National Natural Science Foundation under Grant Nos. 61563011, 61473158, 61703012, and 61374006, and the Ph.D Research Fund of Guizhou Normal University under Grant No. 11904–0514170.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Zhang, K. & Cheng, M. Adaptive Numerical Approach for Optimal Control of a Single Train. J Syst Sci Complex 32, 1053–1071 (2019). https://doi.org/10.1007/s11424-018-7277-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-018-7277-7

Keywords

Navigation