Skip to main content
Log in

A Nonlinear Small-Gain Theorem for Large-Scale Infinite-Dimensional Systems

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper develops a large-scale small-gain result for dynamic networks composed of infinite-dimensional subsystems. It is assumed that the subsystems are input-to-output stable (IOS) and unboundedness observable (UO), and the large-scale infinite-dimensional system can be proved to be IOS and UO if the proposed small-gain condition is satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Desoer C A and Vidyasagar M, Feedback Systems: Input-Output Properties, Academic Press, NY, 1975.

    MATH  Google Scholar 

  2. Vidyasagar M, Input-to-Output Analysis of Large-Scale Interconnected Systems, Springer-Verlag, Berlin, 1981.

    Book  MATH  Google Scholar 

  3. Hill D J, A generalization of the small-gain theorem for nonlinear feedback systems, Automatica, 1991, 27(6): 1043–1045.

    Article  MathSciNet  Google Scholar 

  4. Mareels I M Y and Hill D J, Monotone stability of nonlinear feedback systems, Journal of Mathematical Systems, Estimation and Control, 1992, 27(11): 275–291.

    MathSciNet  MATH  Google Scholar 

  5. Sontag E D, Smooth stabilization implies coprime factorization, IEEE Transactions on Automatic Control, 1989, 34(4): 435–443.

    Article  MathSciNet  MATH  Google Scholar 

  6. Sontag E D, Futher facts about input to state stabilization, IEEE Transactions on Automatic Control, 1990, 35(4): 473–476.

    Article  MathSciNet  MATH  Google Scholar 

  7. Sontag E D and Wang Y, On characterizations of the input-to-state stability property, Systems and Control Letters, 1995, 24(5): 351–359.

    Article  MathSciNet  MATH  Google Scholar 

  8. Sontag E D and Wang Y, New characterizations of input-to-state stability, IEEE Transactions on Automatic Control, 1996, 41(9): 1283–1294.

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang Z P, Teel A R, and Praly L, Small-gain theorem for ISS systems and applications, Mathematics of Control, Signals and Systems, 1994, 7: 95–120.

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang Z P, Mareels I M Y, and Wang Y, A Lyapunov formulation of the nonlinear small-gain theorem for interconnected systems, Automatica, 1996, 32(8): 1211–1214.

    Article  MathSciNet  MATH  Google Scholar 

  11. Jiang Z P and Wang Y, Input-to-state stability for discrete-time nonlinear systems, Automatica, 2001, 37(6): 857–869.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dashkovskiy S, Rüffer B S, and Wirth F R, An ISS small-gain theorem for general networks, Mathematics of Control, Signals and Systems, 2007, 19: 93–122.

    Article  MathSciNet  MATH  Google Scholar 

  13. Jiang Z P and Wang Y, A generalization of the nonlinear small-gain theorem for large-scale complex systems, Proceedings of the 7th World Congress on Intelligent Control and Automation, 2008, 1188–1193.

    Google Scholar 

  14. Liu T, Hill D J, and Jiang Z P, Lyapunov formulation of ISS cyclic-small-gain in continuous-time dynamical networks, Automatica, 2011, 47(9): 2088–2093.

    Article  MathSciNet  MATH  Google Scholar 

  15. Karafyllis I and Jiang Z P, A vector small-gain theorem for general non-linear control systems, IMA Journal of Mathematical Control and Information, 2011, 28: 309–344.

    Article  MathSciNet  MATH  Google Scholar 

  16. Liu T, Jiang Z P, and Hill D J, Nonlinear Control of Dynamic Networks, CRC Press, Boca Raton, 2014.

    Book  MATH  Google Scholar 

  17. Dashkovskiy S and Mironchenko A, Input-to-state stability of infinite-dimensional control systems, Mathematics of Control, Signals, and Systems, 2013, 25: 1–35.

    Article  MathSciNet  MATH  Google Scholar 

  18. Dashkovskiy S and Mironchenko A, Input-to-state stability of nonlinear impulsive systems, SIAM Journal on Control and Optimization, 2013, 51(3): 1962–1987.

    Article  MathSciNet  MATH  Google Scholar 

  19. Mazenc F and Prieur C, Strict Lyapunov functions for semilinear parabolic partial differential equations, Mathematical Control and Related Fields, 2011, 2(1): 231–250.

    Article  MathSciNet  MATH  Google Scholar 

  20. Jayawardhana B, Logemann H, and Ryan E P, Infinite-dimensional feedback systems: The circle criterion and input-to-state stability, Communications in Information and Systems, 2008, 8(4): 413–444.

    Article  MathSciNet  MATH  Google Scholar 

  21. Prieur C and Mazenc F, ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws, Mathematics of Control, Signals, and Systems, 2012, 24: 111–134.

    Article  MathSciNet  MATH  Google Scholar 

  22. Karafyllis I and Krstic M, ISS with respect to boundary disturbances for 1-D parabolic PDEs, IEEE Transactions on Automatic Control, 2016, 61(12): 3712–3724.

    Article  MathSciNet  MATH  Google Scholar 

  23. Mironchenko A, Local input-to-state stability: Characterization and counterexamples, System and Control Letters, 2016, 87: 23–28.

    Article  MathSciNet  MATH  Google Scholar 

  24. Mironchenko A and Ito H, Construction of Lyapunov functions for interconnected parabolic systems: An iISS approach, SIAM Journal on Control and Optimization, 2014, 53(6): 3364–3382.

    Article  MathSciNet  MATH  Google Scholar 

  25. Mironchenko A and Wirth F, Characterizations of input-to-state stability for infinite-dimensional systems, IEEE Transactions on Automatic Control, 2017, PP(99): 1–1.

    Article  Google Scholar 

  26. Ingalls B, Sontag E D, and Wang Y, Generalizations of asymptotic gain characterizations of ISS to input-to-output stability, Proceedings of the 2001 American Control Conference, 2001, 2279–2284.

    Google Scholar 

  27. Lin Y, Sontag E D, and Wang Y, A smooth converse Lyapunov theorem for robust stability, SIAM Journal on Control and Optimization, 1996, 34: 124–160.

    Article  MathSciNet  MATH  Google Scholar 

  28. Henry D, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.

    Book  MATH  Google Scholar 

  29. Cazenave T and Haraux A, An Introduction to Semilinear Evolution Equations, OxfordUniversity Press, New York, 1998.

    MATH  Google Scholar 

  30. Jacob B and Zwart H J, Linear Port-Hamiltonian Systems on Infinite Dimensional Spaces, Springer, Basel, 2012.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adiya Bao.

Additional information

This work was supported by the National Science Foundation under Grant No. ECCS-1501044, the National Natural Science Foundation under Grant Nos. 61374042, 61522305, 61633007 and 61533007, and the State Key Laboratory of Intelligent Control and Decision of Complex Systems at BIT.

This paper was recommended for publication by Guest Editor XIN Bin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, A., Liu, T., Jiang, ZP. et al. A Nonlinear Small-Gain Theorem for Large-Scale Infinite-Dimensional Systems. J Syst Sci Complex 31, 188–199 (2018). https://doi.org/10.1007/s11424-018-7376-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-018-7376-5

Keywords

Navigation