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Flocking with General Local Interaction and Large

Population*

CHEN Ge - LIU Zhixin

Abstract This paper studies a flocking model in which the interaction between agents is described
by a general local nonlinear function depending on the distance between agents. The existing analysis
provided sufficient conditions for flocking under an assumption imposed on the system’s closed-loop
states; however this assumption is hard to verify. To avoid this kind of assumption the authors introduce
some new methods including large deviations theory and estimation of spectral radius of random
geometric graphs. For uniformly and independently distributed initial states, the authors establish
sufficient conditions and necessary conditions for flocking with large population. The results reveal
that under some conditions, the critical interaction radius for flocking is almost the same as the critical
radius for connectivity of the initial neighbor graph.

Keywords Consensus, Cucker-Smale model, flocking model, multi-agent systems, random geometric

graph.

1 Introduction

The flocking, which means the collective coherent motion of a large number of self-propelled
organismes, is an amazing phenomenon in nature. It attracts the researchers from diverse fields,
including biology, physics, computer science, mathematics and control theory, see [1-6] among
many others. In order to investigate the flocking phenomena exhibited in biological systems,
the well-known Vicsek model was proposed in [3], in which the heading is updated according
to the headings of the corresponding neighbors. Simulation results reveal that the headings
of all agents will be almost the same (called consensus or flocking) for large population size.
The theoretical study for the flocking behavior of the Vicsek model can be found in [7-10].
Inspired by the Vicsek model, Cucker and Smale also developed a flocking model in which
each agent interacts with all other agents and the interaction weights decay according to the
agents’ distance, and proposed some sufficient conditions for flocking which depend on system
parameters only['!]. Following their work, the theoretic results with different scenarios, for
example, the noisy environment, and the hierarchical structure, are given for the Cucker-Smale

model and its variants (see [12-20]).
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The assumption of global interaction between agents in the Cucker-Smale model may not
be applicable for some practical systems especially for systems with large population size. For
example, in [4], Buhl, et al. observed that the individual adjusts its direction to align with
its neighbors within an interaction range; In [21], Rosenthal, et al. found the golden shiner
(a kind of fish) uses simple, robust measures to assess behavioral changes of the others in
neighboring region, and the interaction weight depends on the metric distance and ranked
angular area; In [22], Rieu, et al. showed that the spatial correlation of the velocities of
Hydra cells decreases to zero rapidly with regarding the distance between cells, and remains
zero when the distance is large. For some systems, it may be even impossible to obtain the
explicit expression of interaction between agents (see [23]). To be more practical, Martin, et
al. proposed a multi-agent model in which the interaction between agents is represented by a
general non-negative and non-increasing function?*. Also, they showed that the system will
achieve flocking behavior if the maximal perturbation allowed on the relative positions of agents
is not bigger than a constant, and the maximum difference among the initial velocities of all

(241 However, how to guarantee the condition of the relative position

agents is small enough
perturbation is unsolved.

This paper aims at providing some flocking conditions depending on initial state and sys-
tem parameters only for a multi-agent model with general local interaction. This problem is
challenging because the positions and velocities of all agents are coupled. Also, the local interac-
tion between agents are described by a general state-dependent function. These characteristics
make that many traditional tools like Lyapunov method cannot be used. Similar to [25-27],
we investigate the flocking behavior under random initial states. The large deviations theory is
introduced to estimate the maximum degree of the dynamic weighted graphs, and the extension
of the random geometric graph theory is employed to estimate the spectral radius of the initial
neighbor graphs. We establish sufficient conditions and necessary conditions for the flocking
behavior of our multi-agent model. In particular, we reveal that under some conditions, the
smallest possible interaction radius for flocking is almost the same as the critical connectivity
radius of the initial neighbor graphs.

The rest of this paper is organized as follows. In Section 2, we provide the problem form-
luation. The main results are given in Section 3. In Section 4, we present the approach to
estimating and calculating a key value which characterizes the property of nonlinear functions.

The proofs of our main results are put in Section 5. Concluding remarks are made in Section 6.

2 Problem Statement
2.1 A Nonlinear Flocking Model

This paper considers a nonlinear discrete-time multi-agent system composed of n spatially
distributed agents, each moving in a d-dimensional (d > 2) Euclidean space R%. Let V £
{1,2,--- ,n} to be the set of all agents. Set X;(¢) € R? and V;(t) € R to be the position and

velocity of agent ¢ at time ¢ respectively. Following [24] but with some modifications, for any



time ¢ > 0 and agent ¢ € V, X;(t) and V;(¢) are updated according to the following equation,
Xi(t+1) = X;(t) + Vi(2),

- (1)
Vit +1) = Vi) + Y fu (i) — 25 (0)I]) (Vi (1) = Vi(t)),
j=1
where the nonlinear function f,(-) denotes the local interaction weight, and || - || represents the
Euclidean norm. From an intuitive point of view, the larger the distance between agents, the
weaker the interaction weight f,,(-) should be. Without loss of generality, we assume that f,(-)

is a non-increasing integrable function satisfying

ful) > 0, 0<x<ry, @)

=0, T > T,
where 7, is called the interaction radius. In this paper, the commonly used circular or spherical
neighborhood is adopted. The pair of two agents is called neighbors if and only if their distance
is less than a pre-defined radius r,.
Let x;;(t) and v;;(t) denote the jth element of X;(¢) and V;(¢), respectively. Denote X (¢) :=
(@i (t))nxa and V(t) := (03 (t))nxa. The system (1) can be rewritten into the following matrix
form:

X(t+1) = X(t) + V(1),

(3)
V(t+1) = P(t)V (1),

where P(t) = (pij(t))nxn is the weighted average matrix defined by

fr (i (@) =z (D)), if j # 1,
pit) =9 _ S Ju(lai(t) —2;(8)]),  otherwise.
j=1,j#i

For any i € V and t (= 0,1,---), we have 37, pi;(t) = 1.

The objective of this paper is to investigate the flocking behavior of the system (3) with
large population. Follow [24] we say that the system (3) achieves a flocking behavior if the
velocities of all agents reach agreement, that is,

lim max [[Vi(t) = V()] = 0. (4)

t—o0 1<i,j<n

2.2 Random Geometric Graphs

Following our previous work [27], we assume that the n agents are independently and uni-
formly distributed in the unit cube [0,1]¢. Denote X, = {X1(0), X5(0),---, X, (0)} as the
set of initial positions of the n agents. We introduce a random geometric graph G(X,,;7y,) to
describe the neighbor relations between agents at the initial time, with vertex set V and with
undirected edges connecting the pairs {X;(0), X;(0)} satisfying || X;(0) — X;(0)|| < ry; See [28]



for more properties of random geometric graphs. It is worth pointing out that the positions
are not independent and the properties of random geometric graphs cannot be used any more
when the agents move around.

In order to state our results clearly, we assume that the interaction radius has the following

expression,

nh_)rrgo (nrd/logn) = a € (0, o). (5)

Set R. = R.(n) := {/ %, where 74 denotes the volume of the unit ball in R?. It is proved
that for d = 2, R, is the critical connectivity radius of G(X,,; r,,) in a probability sense (see [29]).
The following lemma shows that a similar result holds for d > 3.

Lemma 2.1 The random geometric graph G(X,;r,) is connected with high probability if
o> %, and is not connected with high probability if o < %, where « is defined by (5).

The proof of Lemma 2.1 is presented in Appendix 6.

We call r,, the super-critical connectivity radius of G(X,,;7,) if a > 2971/(dr,), and we call
7, the sub-critical connectivity radius of G(X,,;r,) if a < 2971 /(dry).

2.3 Large Deviations Techniques

The large deviations techniques are applied to deal with the influence of the nonlinear
interaction weights f,,(-). We first introduce some notations.
For a given constant § > 0, define

fn(0), if © < drp,
frs(x) ==
fnlx —0ry), else.
By the definition of f, 5, we have f,, = f, 0. Let xg = (%, %, e ,%) be the center point of

[0,1]%, and set
&ns = frs (|| X —0]|)

where X is a random variable uniformly distributed in [0, 1]¢. For z € R, define

I,.5(z) :==sup {0z — (n — 1) log (E [e?*"2])}. (6)
9>0
The function (6) is called a rate function in large deviations theory, see Chapter 1.2 of [30]. By

Lemma 2.2.5 in [30], we have
Ls{(n = DElgns]} = 0.

Let ks be (n — 1)f,(0) for the case of Var(&,s) = EE 5 — (Eéns)? = 0 (ie., &ns = fn(0)
is a degenerate random variable), and be a solution of the equation I, s(x) = logn in ((n —
1)E[¢n,5],00) for the case of Var(§, s) > 0. We will show that the solution uniquely exists in

Section 4. For the simplicity of expression, we denote &, = &0, I, = Ip,0, and ko, = En,O'



2.4 Notation

In this paper, we investigate the flocking behavior of the system (3) on the probability space
(2, F, P), where the sample space 2 = [0, 1]%", and the o-algebra F is the collection of all the
Borel subsets of 2. We say that a sequence of events A,, (n > 1) occurs with high probability
(w.h.p.) if lim, o P(A4,) = 1.

A square matrix M = (m;j)nxn is called stochastic, if all elements m;; is nonnegative
and for 1 < i <n, 377 m;; = 1. For a matrix A € R4 the Frobenius norm || - ||p and

the max norm || - [lmax of the matrix A are, respectively, defined as ||Al|r = />, ;ai; and
[ Allmax = max; j |ai;|-

For two positive scalar sequences g1(n) and ga(n), we say that (i) g1(n) = O(g2(n)) if there
exists a constant ¢ > 0 and a value ng > 0 such that g1(n) < cga(n) for any n > ng; (ii)
g1(n) = O(g2(n)) if there exist positive constants ¢; and ¢y and a value ng > 0 such that

c192(n) < g1(n) < caga(n) for any n > no; (iii) g1(n) = o(g2(n)) if lim, o i;gzg =0.

3 Main Results

In this paper, we proceed with our analysis under the system (3) with the following assump-
tions on the initial states of all agents and the interaction function f,(-):

A1) The initial positions {X;(0)}", are independently and uniformly distributed in [0, 1]¢.

A2) The nonlinear interaction weight f,,(-) is a non-increasing integrable function satisfy-
ing (2), and the interaction radius r, satisfies (5).

To avoid repetitive description we do not state the above assumptions in our results.

3.1 Sufficient Conditions for Flocking
Let Vo := 13" Vi(0) and V := (V5 V5, -+, Vih)T € R™*?. Denote
- V() -Vl
£V(0) = [V0) = Vil 10 (D= ) ], Y
[V(0) = Vllmax
The sufficient condition for flocking can be stated as follows.

Theorem 3.1 Suppose that the parameter a defined by (5) satisfies o > %, and that
there exist positive constants § and € such that k,, s <1 — ¢ holds for large n. Then flocking is
achieved w.h.p. if one of the following two conditions holds:

(i) ae? < (d+3)¥2, and

L(V(0)) < cn?r, - min {rfﬂﬂ P26 + £)ry), L2 e £ OFE)ra) } : (8)

(log n)24/(@=D)
(ii) ae? > (d+3)%2, and
L(V(0)) < eSf2((6 + )rp]n®r, - min {rid”, 1} , (9)

where ¢ is a positive constant depending on d, £ and o .

fThroughout this paper, a constant ¢ depending on a means that ¢ depends on o only for a < oo, and will
not depend on « for & = oo



The proof of Theorem 3.1 is put in Subsection 5.2.

Remark 3.2 The value of En)(; in Theorem 3.1 can be calculated by solving Equation (16),
and some theoretical results for k,, 5 can also be obtained, see Proposition 4.1 in Section 4.

Remark 3.3 It is clear that £(V(0)) defined via (7) satisfies £(V(0)) < (lo% +1)
max; j |v;;(0)|. Hence, Theorem 3.1 still holds if £(V(0)) in (8) and (9) is replaced by (10% +1)
max; j |v;;(0)|, which means that under some conditions on the neighborhood radius and the
interaction weights, the system (3) can reach flocking if the initial velocities are suitably small.

In fact, under some further conditions on f,,, the parameter  in the condition of Theorem 3.1

can be removed, see the following corollary.

Corol_lary 3.4 Leta> % and r, = o(1). Suppose that there exists a constant € > 0
such that k, <1 — ¢ for large n, and

inf <fn+0) /01 fn(rny)ydldy) =co > 0. (10)

Then the system (3) reaches flocking w.h.p., if one of the following two conditions holds:
(i) ae? < (d+3)4? and

L(V(0)) < en?r, - min {ridJerfl (crery), %} ;
(i) ag? > (d + 3)¥? and L(V(0)) < en?r2t3 2 (cier,), where ¢ = c(d, e, co,a) and ¢, =
c1(d, ¢, ) are two positive constants.
The proof of Corollary 3.4 is put in Subsection 5.2.
Remark 3.5 From an intuitive point of view, the condition (10) means that the interac-
tion weight f,, () steadily decreases to zero, and cannot decay very fast.
In the following, we provide an example to illustrate the result of Corollary 3.4.

Example 3.6 Let § > é, ¢ € (0,1] and v > 0 be three constants. Set

en(L—2a7/r)), ifx <ry,,
fnlx) =

0, otherwise,

’
C

w4 log®® n

that &, = &,,0 = fu(||X — z0]|), we obtain the following inequality:

where r,, = n~Y4log’ n, ¢, = . It is easy to verify that f,, satisfies (10). Recalling

Tn d
El¢,)] = L (1—r727) d a1 g0 — YCnTdT < y '
(€] /0 1 ( r, :C) TaT x ~+d SGtan

Using the following Proposition 4.1 (iii), we have for large n, k,, = nE[£,](1+0(1)) < 1— ﬁ.

Thus, by Remark 3.3 and Corollary 3.4 (ii), the system (3) reaches flocking w.h.p., if the velocity
satisfies max; j |v;;(0)| < en 7 (logn)*#~1 with ¢ > 0 being a positive constant.



We also give some simulations for Theorem 3.1 and Corollary 3.4. Assume the space dimen-
sion d = 2, the interaction radius r, = y/alogn/n with « being a positive constant, and the

weight function

1—x/ry

fn(x): amlogn?
0, otherwise.

if z <rp,,

If o > 1/7, we can get

2 (Viogn/(n) + ern)

log4 n

n?ry, -min < 78 f2 (er,),

9 7 42 logn 3/2
=nr, fi(er,) =0 . (11

n

where € is a small positive constant. The initial positions {X;(0)}" ; are independently and
uniformly chosen from the area [0, 1]?, and the initial velocities are set to be
(—v'n~%log? n,0), if X;1(0) <1/2

Vi(0) = 5 X , V1<i<n,
(v'n"2log2n,0),  otherwise

where v’ is a positive constant. By (7) we can obtain
L(V(0)) =~ v'n"% log% n(logn+1) =0 (rf% log% n) . (12)

Simulations are carried out by choosing n = 600, and the results are shown in Figure 1. It is
shown that there is a demarcation line v/,(a) concerning with v' and a between the behaviors
of flocking and no flocking. From (11), (12) and Figure 1, the sufficient conditions for flocking

in Theorem 3.1 and Corollary 3.4 are tight in the order under this kind of interaction functions.

25

15F

No flocking

051

Figure 1 There is a demarcation line v;(a) concerning with v’ and a. The flocking
behavior can be reached below the line, while cannot be reached above the

line.



3.2 Necessary Conditions for Flocking

By Remark 3.3, we see that for small initial velocity, the connectivity of neighbor graphs
can be maintained, and consequently the flocking behavior can be achieved. However, when the
initial velocities become larger and larger, the connectivity of the dynamical neighbor graphs
may be lost, even though the initial graph is connected. For such a case, the investigation
for flocking becomes much harder. In order to simplify the analysis for the dependency of the
flocking conditions on initial velocities of the agents, we introduce the definition v-flocking as

follows.

Definition 3.7 Let v > 0 be a constant. If the system (3) reaches flocking for any initial

velocities satisfying max;cy ||V;(0)]] < v, then we say the system reaches v-flocking.

From Definition 3.7, we see that the v-flocking behavior monotonically depends on v. For
any initial positions of the agents, there exists a critical value v, such that the v-flocking can be
achieved for v < v., and cannot be achieved for v > v.. The investigation of v, is an interesting
but very hard topic, and it falls into our future research.

The necessary conditions for v-flocking are presented as follows.

Theorem 3.8 (i) If a < %, then the system (3) cannot achieve v-flocking w.h.p. for
any v > 0.

(ii) Ifa > % and 1, = o(1), then the system (3) cannot reach (2~%'k,r,)-flocking w.h.p.
Jor kn = O(1) and ky,, < 2%, and also cannot reach (§kyrn)-flocking w.h.p. for k, = o(1).

The proof of Theorem 3.8 is put in Subsection 5.3.

Under the definition of v-flocking, the sufficient conditions for flocking can be stated in a
more clear manner.

24~

Corollary 3.9 Assume that o > W; and r, = o(1), and that there exists a constant

e > 0 such that for large n, (i) e <k, <1 —¢; (i) fa(ern) > efn(0); and (iii) f, (R. +ern) >

2d/(d—1),,~2

72 (logn) Then the system (3) reaches (cr3(logn)~1)-flocking w.h.p., where ¢ =

c(d,e, ) > 0 is a constant.

The above corollary can be directly deduced from Corollary 3.4.

From Theorem 3.8 (i) and Corollary 3.9, we see that in a probability sense, R. can be
considered as the smallest possible interaction radius for flocking, and also the critical inter-
action radius for v-flocking with v < ¢r?(logn)~!. We illustrate the result of Theorem 3.8

and Corollary 3.9 in Figure 2 where the interaction function f,(-) satisfies the conditions of
Corollary 3.9.

4 Calculation and Estimation of EW;

In this section, we present the approach to the estimation and calculation of Em;. We only
consider the case of Var(§,, s) > 0. Note that I,, s((n — 1)E[&,5]) = 0, and

lim I, 5(z) > lim {z — (n—1)log (E [eg""‘])} = o0.

Tr—r00 Tr—r00



By the continuity of I, s(x), we see that the solution of the equation I, 5(z) = logn in ((n —
1)E[¢n.5],00) exists. Furthermore, by Cauchy-Schwarz inequality, we have

2
d2 0&n _ E [eegnj] E |:§121,560£n’5:| - (E [gn,éeefn,a]) .
g 108 (E [e°]) = (B )2 > 0. (13)
A
No No
Kt
241
e Unknown
fog
e Yes

0,0) 24;

dnd

Figure 2 “Yes” (or “No”) means that in a probability sense, the system (3) can
(cannot) reach wv-flocking, and “unknown” means that we cannot judge

whether the system reaches v-flocking

Hence, the following equation

(n = 1)E [€n,5e" ]

E [o%6n ] =0 (14)

d
0 {6z — (n—1)log (E [695"’5})} =x—

has a unique solution 6*(x) for any x > 0. Moreover, by (13), the right-hand side of (15) is

strictly monotonically increasing. Thus, the equation

logn = I, 5(z) = 0*(x)x — (n — 1) log (E [ee*(m)fnxé})

— B [gn 50" (s :
()" ;[egﬁ(;‘iiﬂ L = 1)1og (B [er@ea]) (15)

with respect to 8*(z) also has a unique solution 6,, s. By (14), we know that k,, s is the unique
solution of I,, s(x) = logn in ((n — 1)E[&, s],00). Combining (15) with (14), we see that k,, s
and 5,175 can be obtained by solving the following equations,

(n— 1B [g, 5075 ~logn+ (n—1)log (& [ePsene])

= =kns- 16
E [65"’55"’5} 971,5 0 ( )




Furthermore, if f,, does not decay very fast, there are some theoretical results to estimate
Enﬁg, kn(=: En,O) and 0, (=: 571,0)-

Proposition 4.1 Suppose that v, = o(1), and f, satisfies (10). Let co be the constant
appearing in (10). Then the following results hold:

(i) & = O(nry £2(0)) and 8, = O(1/ f4(0));

(ii) There ewists a constant ¢; = c1(d,a,co) > 0, such that for any § € (0,1), ks <
(14 c10)kn;

(iii) For the case of a = o0, kyp, = nE[&,](1+ o(1)) and 6,, = o(1/f,(0)).

The proof of Proposition 4.1 is in Appendix 6.

Using a similar method as that of Proposition 4.1, we obtain the following results.

Corollary 4.2 Suppose 1, = o(1). Then for any constant § > 0, we have ks =
O(nrl £,(0)) and 0,5 = O(1/f.(0)). If @ = 0o, then kns = nE[&, s](1 + o(1)) and 0,5 =
o(1/fn(0)).

In the following, we present two examples to show how to calculate the value of k,,. For this,
we introduce some notations in large deviations theory. Define H : [0,00) — R by H(0) = 1

and
H(a)=1-a+aloga, a>0.

Note that H(1) = 0 and the unique turning point of H is the minimum at 1. Also H(a)/a is
increasing on (1,00). Let H~' :[0,1] — [0, 1] be the unique inverse of the restriction of H to
[0,1], and let H}':[0,00) — [1,00) be the inverse of the restriction of H to [1, 00).

Example 4.3 Set 7, = en~?%(logn)*/¢ and

b, x <1y,
fulx) =

0, x>r,,

where ¢ and b,, are positive constants. Recall that &, = &, 0 = fn(||X — @0]|), where zy =

(3,%.--+,3) € R and X is a random variable distributed uniformly in [0,1]¢. To solve (16)

we first calculate the following equation,

B[] = P(IX ~ o]l € ra)e™ b + P(IX ~ a0 > )
=1+ (egnb" - 1) macin~1logn. (17)

Similarly,

E [{neE"E"] = eg"b"ﬂ'dcdbnn*l log n. (18)

By Proposition 4.1 (i), we have 8,b, = 8, f»(0) = O(1). Then by (17), we obtain E[ef&] =
1 +o(n~'?) and

log E [eg"fn} = (egnbn - 1) macin " logn + O(n~%log® n). (19)



Substituting (18) and (19) into (16), we have

O,byelnbn — fnbn — <7rdlcd - 1) (1 +o (n_l/Q)) +o (n_1/2) . (20)

By the definition of H} ', we see that log(H ' (=) is the unique solution of the equation we® —

ol o]
ﬂ'dlcd —1 with respect to . Substituting this into (20) we have 0,, = % log(HJ:l(#))(l +
0(1)). Furthermore, by (16) we have &, = H ' (=17)mac?b, logn(1 + o(1)).

mTacd

Example 4.4 Let r, = cn™/?(logn)"/? and

e’ =

B bn(l—r,:lzzr), r <71y,

fn(x) =

0, T > T,

where ¢ and b,, are positive constants. Similar to (17) and (18) we have
E |:e§n£nj| — 1 _ Wdr’lril +/ egnbn(lf'r‘;lz)dﬂdxd—ldx
0
r_
=1-— wdrfll + dﬂ'd’l“Z/ ee"b"y(l — y)dfldy,
0
E [gnegnfn} — / bn (1 _ 'f',;l.’,[]) egnbn(lf'r‘;lz)dwdxdfldx
0

1 _

= dwerbn/ yefnbny(1 — y)d-1ay.
0

By Proposition 4.1 (i), we have 0,,b,, = 0, f,(0) = O(1). Similar to (20) we have

Lo 1
gnbn/ ye""b"y(l—y)d’ldy—/ e?n0ny(1 — 3y)d=1y
0 0

(= 3) (1007 ) o () &

Let * be the unique solution of the equation

1 1

drgc?  d

1 1
x/ ye™ (1 —y)"dy — / (1 —y)"dy =
0 0

with respect to x. Substituting z* into (21) we can get 0,, = l”f—*(l + o(1)). Substituting this
into (16) we obtain

1
ky = drgciby logn (/ ye® V(1 — y)d_ldy) (14 0(1)).
0

5 Proofs of Main Results
5.1 Key Lemmas

In order to prove the main results of this paper, we first present some key lemmas. By (3)
we have V(t + 1) = P(t)--- P(0)V(0). To study the flocking behavior, we need to deal with



the convergence of the matrix product P(t)--- P(0). Compared with our previous work [27], a
crucial point lies in the fact that the weighted average matrix P(t) is determined by the nonlinear
function f,(-) and the distance between agents. We apply the large deviations techniques to
deal with this.

Introduce the maximum weighted degree of all agents at time ¢ as
Anlt):= max { > LX) - X0}
= 1<j<n, i

Note that f,(-) is a non-increasing function. If there exists a positive constant ¢ such that
1X:(8) = X5 (Ol = [ Xi(0) = X5(0)[| — 67, (22)
then by the definition of f, 5(-) we have

Fu(I1Xa(t) = X501 < fs([1X:(0) = X;(0)]])- (23)

Thus, we have the following lemma of A,,(¢).

Lemma 5.1 Assume that there exists a positive constant §, such that

An,s = max > Fas(I1X:0) = X500)]) p <1,
o 1<j<n,j#i
and that the inequality (22) holds for all i and j and all t > 0, then we have A, (t) < 1.
It is clear that under the conditions of Lemma 5.1, P(t) (¢ > 0) is a stochastic matrix. The

stochastic matrices may bring convenience for the convergence property of P(t)--- P(0).

For A, s, we have the following results.

Lemma 5.2 Given a constant § > 0, suppose that Var(&,s) > 0 holds. Then,
An,é < En,é(l + 0(1))7 'U)hp (24)

The large deviations techniques are used in the proof of Lemma 5.2, and the proof details
are put in Appendix 6.

In the following, we study the eigenvalues of the matrix P(¢). Under the conditions of
Lemma 5.1, P(t)(t > 0) is a symmetric stochastic matrix. Thus, the eigenvalues of P(t) are all
real numbers. We denote \;(t) = X\;(¢,n) as the i-largest eigenvalues of P(t), and arrange all

eigenvalues according to the following order,
L=M(t) 2 A(t) 2 -+ 2 An(t) 2 —1.

The essential spectral radius A(¢) of P(t) is defined as A(t) = \(t,n) := max{|A2(t)], |\ (t)[},
which plays a key role for the convergence of the matrix product P(t)--- P(0).

Lemma 5.3 Assume that o defined by (5) satisfies a > %, and that there exists a
constant § > 0, such that w.h.p. the following inequality holds,

sup {[| Xy (t) — X;(t) — Xi(0) + X; (0)[|} < drn. (25)

it



Furthermore, for any given constant ¢ > 0, EW; satisfies EW; < 1 —¢. Then the essential
spectral radius \(t) (t > 0) satisfies the following inequalities:
(i) If ae? < (d + 3)¥/2, then w.h.p.

X(t) <1—¢n?-min {Tid+2f72l((6 +e)rn), fv% (Re+ (6 +&)ry) } :

(log 1)24/(d=1)
(i) If ac? > (d+ 3)¥/2, then w.h.p.
At) <1 —cn?f2((6 + €)ry,) min {r?ld”, 1} ,

where ¢ is a positive constant depending on «, € and d.

The proof of Lemma 5.3 is put in Appendix 6.

5.2 Proofs of Theorem 3.1 and Corollary 3.4

Proof of Theorem 3.1 By the fact that the row sum of P(t) is 1, we see that P(t)V = V.
By (3), we have

V(k+1)=Pk)P(k—1)---P(0)V(0) = P(k)P(k —1)---P(0)(V(0) = V) + V. (26)
Using (26) and Corollary 1 in [11], we obtain that
k—1
[V(E) = Ve < IV(©0) = Ve ][]0 (27)
i=0

Denote

J2(Re+ (6 +¢)rn)
(log 1)24/(@=1)

1—cn?f2((6 + &)ryp) min {r29+2 1}, else,

1 — cn? min {r?f“szl((é +e)rn), } . if ae? < (d + 3)Y/2,

AF =

where ¢ is the same constant appearing in Theorem 5.3. Take

It is easy to see that k* satisfies k* < —2= log ( VO —Vir ) By the condition of the theorem,

=37 PO VO~V max
we have
4 V(©) = Vir (1 = A")dry
IV(O) = P (g (O ) 44 < A=XD0n, o8)
”V(O) - VHmax 4\/3
then
2[V(0) = Vllmax (\/Ek* + %) < ory. (29)

We assert that if (29) holds, then we have w.h.p.

max d;j(k) < dry, Yk >0, (30)

1<i,j<n



where dw(k) = ||X1(k) - Xj(k) - XZ(O) + XJ(O)H
We prove the aforementioned assertion by induction. It is clear that (30) holds for k& = 0.
We assume that the assertion holds for 0 < s < k, that is, w.h.p.

max d;;(s) < dry, V0<s<k.
i
By Lemmas 5.1 and 5.2, the matrix P(s) (0 < s < k) is stochastic. Denote

d 1/2
a(t) = (Z (15?359'””’3“) - Uz'z,j(t)|2> ) :

j=1
It is clear that the sequence a(t) is monotonically non-increasing, and thus
a(t) < a(0) < 2Vd|[V(0) — Vmax. (31)

Moreover, using Lemma 5.3, we have \(s) < A\* for s < k. By (27) and (31), we obtain that
w.h.p.

k—1
max{dw(k—i—l}—max{uz )H}

s=0

k
< k*a(0) + 2 Z (mlaXHVi(s) - VOH) <ka(0)+2 3 |V(s) = TV|r

s=k* s=k*
k
< E*2Vd||V(0) = Vlmax + 2[V(0) = V[F > (A*)*
s=k*
< 20V(0) = Pl (\/ak* n ﬁ) < b (32)

The assertion holds for s = k + 1. By induction, the assertion holds for all s > 0.
By (27), (30) and Lemma 5.3, w.h.p.

lim [[(V(E) = V)[lr <[[V(0) = V|r- lim (\*)* =0
k—o00 k—o00

holds for all large n. Substituting the value of \* into (28) yields our result. |

Proof of Corollary 3.4 By Proposition 4.1, we see that there exists a constant ¢ =
d(d,a,co) > 0, such that for any § € (0,1), we have kys < (14 /6)ky,. Take § = 5=, we
have EW; < ( ) kn<1l—=%.Letep =1+ C,, the result follows by the same argument as

that of Theorem 3.1. |

5.3 Proof of Theorem 3.8

(i) Set M,, := |1/(2R.)| — 1, where R. = {/ %, and |z | denotes the largest integer no
bigger than z. For any integer k € [0, M,,], define the point zj := ((2k+1)R,,0,---,0) € [0,1]¢
and set the event

Ag = {Xn N B(zp;n~ 1) #0,X,N {B(:vk;rn —l—n_%)\B(:vk;n_%)} = @}.



Let B(x;r) denotes the d-dimensional ball centered at z with the radius r. By the similar
analysis as that of the equation (4.13) in [27], we have for large n

Pl U 4 >1—2e"”4—[1—<1—exp{—m2_d_#m}>
n

0<k<M,
M, +1
{ <”+n3>wd[<rn+né>d—%1}]
Cepd

2d—1
M, +1
/4 T4 mqa logn
>1—2e —’{1'— ig-exp {————53—3——'}}

1"
—nt/4 -39 +1
>1-—2e —expq—n 2T 7Td 5

where the constants o/, o satisfy a < o/ < o < %j%. So, w.h.p. there must exist an integer
k € [0, M,] such that Ay happens. Without loss of generality we assume Ay happens, then
there exist some agents lying in B(xo;n~'/¢) which have no neighbor in [0, 1]\ B(x;n~/9)
at the initial time. Taking their initial velocities to be (0, —v,---, —v) and the other agents’
initial velocities to be (0,v,---,v) for any v > 0, we see that the system (3) cannot achieve
flocking w.h.p.

(i) Let i be the index of the agent whose position satisfies | X5(0)|| < || X5(0) for any

1 < i < n. Then, for any constant € > 0 we have

rlmon()) e (A or-+(55) )

_ <1 _ Elog">” — (14 o(1)),

n

which indicates that || X5(0)] < 2(871:%)1/51 holds w.h.p. For some constant vy, we set V5(0) =
(=%, —2)T, and V;(0) = —V;(0) for i # .

If k,, = O(1), we take vg = 27971k, r,,. By (3), w.h.p. all elements of X3(1) = X3(0) + V5(0)
are less than 0, and || X5(1) — X;(1)|| > 279, holds for i # 7. By Lemma 5.2, it is easy to

see that there exists a small constant € > 0 such that
#0) = X 50560 - Xl < S22 wnp.
i
Thus, for i # 1,
I1X:2) - X2
= IP6(0) + [1 = 20 UI0) - X:(0) + [1 = 25 (150 - G DO

_ o
> 9= . (1 + [1 - (1 - g) 2_dD w.h.p.



Repeating the above process we have for all ¢ > 1,

1X5(8) = Xa(D)]]

e\Fk kil
—d7 n n
Therefore, there exists a time instant 7" such that w.h.p. for all i # i: (i) | X(T) = Xi(T)|| > 7;
(ii) all elements of V5(T') are negative; (iii) all elements of V;(T') are positive. For such a case,
the system cannot reach flocking.

If k, = o(1), we take vy = %Enrn. Similarly we see that there exists a constant ¢ > 0 such

that w.h.p. d;(1) < (1 —¢)kp, and

o -sonz 1+ (- ] o - (-]

holds for ¢ > 1. Thus, the system cannot reach flocking.

6 Concluding Remarks

A fundamental issue in the investigation of multi-agent systems is how the local interac-
tions affect the collective behavior of the overall systems. This paper studied a discrete-time
nonlinear multi-agent system, where the nonlinear interaction function decays according to the
distance between agents. By applying large deviations techniques to estimate the essential
spectral gap of average matrices whose elements are determined by the nonlinear function and
the distance between agents, we provide sufficient conditions and necessary conditions for the
flocking behavior. Some interesting problems deserve to be further investigated, for example,
how to obtain the critical value of v for v-flocking of our multi-agent model, and how to analyze
the flocking behavior of the continuous-time multi-agent models.
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Appendix

Proof of Lemma 2.1

The lemma holds for d = 2, see [31] and [32]. In the following, we prove the lemma for
d>3.

For a > %, by Theorem 7.14 in [28], we see that the minimum degree of G(X,,;ry,) is
equal to ©(nrl) w.h.p., which indicates that there is no isolated vertex in G(X,;r,) w.h.p.
Following the proof idea of Theorem 3.1 in [31], we see that for d > 3, the probability that
G(X,; 1) is not connected has the same order as the probability that the graph G(X,;r,) has
isolated vertices. Thus, the graph G(X,,;r,) is connected w.h.p.

2d71

For a < ot by the proof of Theorem 3.8 (i) we see that for some vertex k, w.h.p. there

exist some vertices lying in B(xx;n /%) which do not have neighbors in [0, 1]\ B(zx;n~"%).
Thus, the graph G(X,,;r,) is not connected w.h.p. This completes the proof of the lemma.

Proof of Proposition 4.1
(i) By the definition of &,, we have

B |:e§n£n:| -1 Wdri + dﬂ'd/ egnfn(x)xdfldx
0

1 _
=1- WdeL + dwer/ eenfn(rny)yd_1dy7
0

_ 1 _
B [ee®] = dnart [ fulra)eP 200y,
0

Substituting the above two equations into (16) and using the assumption 6,, = O(1/ £, (0)), we

have
j— 1 —
n@ndwdrz / fn (Tny)eenfn(rny)ydfldy
0

1 _
= <logn +n (—mﬂ“i + dﬂ'er/ eeylf"(r"y)ydleI)) (1+0(ry)),
0



which indicates that

L .t (r _ logn 1
[ @l = 1) Py ( g ‘a) Q20 L0, (33)

Let 67 denote a solution of the following equation

1
logn 1
971 n(Tn _ 1 enfn(rny) d_ld — _ 34
| bty =yt eyt - 2 (34)
with respect to #,. Note that if 6,, = 0 then
the left side of (34) < the right side of (34), (35)
and if 6,, > logn/(dmaconrd £,(0)), then by (10),
the left side of (34)
1 1
= ! [/ On fn (Tnzl/d) eOnfn(raz!/®) g, —/ eG"f"(T"zl/d)dz}
d [Jo 0
L 1/d AR "
> — On fn (rnz )dz e/ndn\Tnz ") dy — e/nInmz ") d
d [Jo 0 0
1 L 1/d
> = (Ondeo f(0) = 1) / efnfn(rnz) gy
0
> the right side of (34), (36)

where the following inequality is used

bt b ot i bt dbe L L g s

m m m m? =
1<i<j<m

with {a;,1 <i <m} and {b;,1 <i < m} being two real number sequences satisfying a; > as >
<o > @y, and by > by > -+ > by,. Hence, by (35) and (36) we have

logn
dﬂdCOnrgfn(O) '

By (37) and (5), we have 0% = O(1/f,(0)). Substituting this into (33), we see that the
equation (16) has a solution near to 6. By the uniqueness of the solution of (16) we obtain
that 6,, = 6% (14 0(1)) = O(1/£,(0)). Moreover, by the first equation of (16), we have

0<O < (37)

1
B = ndmgrd / Fu (eI Dy 41 4 o(1)) = O(nr £ (0)). (38)

(ii) Similar to the analysis of (i), we have

1
E [e%"*ﬂ =1 —7gr®(146)% + dmgrd (1 + 5)d/ e Trs[(A40)rnylyd=1g,
0

1
E (&, 5% = dmgri (1 + 5)d/ Frs[(1 4 8)rpyledfnolForaylyd=1g,
0



Now, we consider the solution of the following equation,

logn 1

1
0fn sl(1+8)ry] — 1)l sl tOrmylyd=1g, — —S°
| 0510+ 5= e Uy = e

Define g(y) := fns[(1 + 6)rny] — fn(ray). It is clear that g(y) > 0 for y < 1. Note that

logn

1
0 £, 5[(1 4 8)rpy] — 1) efndnsl(1+8)rny] ydy —
| @psl0+ 8100 - 1y V=

" 1
d
1 *
>/ {05 [fn(rny) + g(y)] — 1} Pnfn(ray)ofng(v)yd=1 g,
0
1
B / 05 fn(rny) — 1) eenf"(rny)ydfldy
0
1 ) *
:/ (9* fn(rny) - 1)e‘9nfn(7”n’y) (69719(9) _ 1) ydfldy

/ 9 0 fn 7‘71"/) 0 Q( ) d— 1dy

>/ eOntn(rny) {gzg(y)e%g(y) — enaly) o 1} v ldy

0
= [ ino i 0590 | vy > 0.
If 6 = 0, then

the left side of (39) < the right side of (39).

Thus, the solution of equation (39) satisfies 0, 5 € (0,6;,). With a similar argument, we have
Ons = 07 5(1 4+ 0(1)). For any ¢ > 0, similar to (38) we have

kn,t5
ndmqrd

1
=(1+ 5)d/ Frsl(1 4 0)rnylefnalnsllrolrnslyd=lay (1 4 o(1))
0

1+0
=/ Frs(rnz)elnalns(nz)2d=14,(1 4 o(1)). (40)
0

By the definition of f,, s and the fact that 6 ; < 6}, we have
146 .
/ Frs(rpz)edn.fns(mz) ,d=1g,
0

4 1
:/ fn(O)eerlﬁf”(o)zd_ldz—i—/ fn(’f‘nz)eerl,éfn(Tnz)(Z + 5)d—1dz

d ’Vl (O) 1 .
5 f ( )e + < )51/ f T2 eenjn ’I“nZ)delf'LdZ
1=0

d _ 5
< fn(0)e? () <% Z <d . 1> > / Fu(rnz)efndn(rn?) d=1q,
— ’L

=1

1
:(1 + 0(5))/ fn(’rnz)ee:;fn("'nZ)Zd—le7
0



where the condition (10) and the fact 87 = O(1/ f,,(0)) are used in the last equation. Combining
this with (40) and (38) our result follows.
(iii) Immediate from (37) and (38).

Proof of Lemma 5.2

Before the proof of Lemma 5.2, we need to introduce some notations. For any n € IN, define
p(n) == |n — 2n/*] and

~

Ins(w) i= sup {0z = (p(n) — 1) log (E [e"]) }.

>
Take EW; > (p(n) — 1)E[&,,5] such that fn75(7€\n7§) = logn. Denote f, = fn,oa & = gn,O;
fn = Nn,O and En = En,O-

Lemma 6.1 For %n and k,,, we have limn_mo@n/ﬁn) =1.

Proof First, by

the inequality k, > 75” can be derived.
Assume that there exists a constant ¢ > 0 such that k,, > (1 + E)?C\n Then for large n,

L) > I ((1 n g)%n)

= sup {9(1 + 8)@11 —(n—1)log (E [e"ﬁn})}
0>0

> i sup {0/(14 ) B = (oln) — Dlow (B [¢")) }
> Sy (145) 7B
> logn = I,(kn),

which leads to contradiction. Our result yields. |
Proof of Lemma 5.2 For simplicity of expressions, we consider the case of § = 0, and it is
easy to extend our results to the case of § > 0.
Denote d; = d;(n) := Elgjgmﬁéi fu (]| X5(0) — X;(0)|). For ky, > (n—1)E[E,], by (2.2.12)

in [30], we have

P(di>k) <P > fu(llzo—X;(0)]) > kn
1<j<n.j#i

—p il > fa([Jao = X500)]) >

kn,
o —
1<j<n,j#i

n—1

< exp (—(n —~ 1)Sup{ OFn_ _1og (B [e"fn})}> = e Inlkn), (41)

g>0 (n—1



where I,,(+) is defined by (6). For any ¢ > 0 we have

In((1+ €)kn)
> 0,k (14+¢)— (n—1)log (E [eg"f"]) (according to (6))

> (1+¢) (5nEn —(n—1)log (E [egnf"D) (according to (16))
=(1+¢)logn. (42)

Combining (42) with (41), we obtain
P(d; > (14 )ky,) < e In((149kn) < g=(4e)logn _ jy=1-e, (43)
Set
P = U Ligisepfny-

i=1

By the Boole’s inequality and (43), we have

z": > (1+4¢)

El

n) <n”c.

Thus,
P (A, > (14¢e)k,) =P(F,) =0 as n— ooc.

The inequality (24) holds. |

Proof of Lemma 5.3

The proof of Lemma 5.3 mainly uses the idea appearing in the proof of Theorem 4.3 of [27].
We first introduce some notations.

For any constant ¢ € (0,1), set K,, = K,(¢) := [gjg], where [z] is the smallest integer
no less than 2. The unit square [0, 1]¢ is divided into K¢ equal small squares with the length of
each side equal to 1/K,. We denote these small squares as S1(n), S2(n), -+, Sga(n). Denote
Si = Si(n) for1 <i< Kff. For each small square S;, 1 <1i < K,(f, let z; denote its center point,
and z; == K,x; + (%, %, ,%) e 74,

Let || - ||1 and || - ||oc denote the [;-norm and infinity norm respectively. For any z,y € Z,
if || — y|/; = 1, then we say that = and y are adjacent, written as z ~ y. Given A C Z%, if for
any x,y € A, there exists a vertex sequence z1,Zo, -+ , T, in A such that  ~ x1,21 ~ Ta, T2 ~
X3, -+, &y ~ ¥y, then we say A is connected. Similarly, if || — y|lco < k, k > 1, we say that =
and y are k-adjacent, written as z ~y, y. Given A C Z%, if for any .,y € A, there exists a vertex
sequence i, To, - , Ty in A such that x ~y 1,21 ~§ T2, T2 ~k X3, -, Ty ~ Y, then we say
A is k-connected. We see that for any k > 1 if A is k-connected, then A must be connected. In
particular, a single vertex set {x} C Z% is both connected and k-connected.

We define the lattice box Bz(K,,) by Bz(K,) := H?Zl([l, K,)NZ). It is clear that Bz(K,,)
is equal to the set {z : 1 < i < K3}. For A C By(K,), we denote A° := Bz(K,)\A.



Let OA denote the internal vertex-boundary of A, that is, the set of vertex z € A such that
{y € A°: [[z — y[ly = 1} is non-empty.

For nn > 0, we use Po(n) to denote the Poisson random variable with parameter 7. Define a
Poisson point process P, as P, := {Y1,Ys,- -+, Ypo }, where {¥1,Y5, - - - } is the set of vertices
independently and uniformly distributed in [0, 1]? and Po(n) is independent of {Y3, Y, - - -}, see
Subsection 1.7 in [28]. For a Borel set A C [0,1]¢, |P,, N A] is a Poisson random variable with
parameter nLeb(A), where |-| denotes the cardinality and Leb(-) denotes the Lebesgue measure.
For any two Borel sets A1, Ay C [0,1]%, if Leb(A1N Az) = 0, then the random variables [P, N A1 |
and |P,, N As| are mutually independent. Set n(n) :=n—n3/%, and let P,(,) be a Poisson point
process in [0,1]¢ with parameter n(n). Then, P, € &, except when Po(n(n)) > n, and by

Lemma 1.4 in [28] we obtain
Poiny € Xn w.h.p. (44)
For any set A C By(K,,), define the function

91(A) == > Prny 0 Sil - [Py 0 Sj1-

2i€A,zjEAC zi~vz;

For any z; € Bz(K,), we call z; open if S; NP,y # (0, and call z; closed otherwise. Let O,,
denote the set of open vertices in Bz (K, ), and let C,, denote the largest open clusters of O,,.

Before proving Lemma 5.3, we provide some preliminary results, see the following Lem-
mas6.2-6.7. Lemmas 6.2 and 6.4-6.7 are proved under the condition (5), and we will omit it

to avoid repetition.
Lemma 6.2 There exists a constant ¢ = c(e, o, d) such that
max |X, NS;| < csdm“i w.h.p.
1<i<Kd
Proof Tt can be easily deduced from Lemma 4.1 of [27]. |

Lemma 6.3 (Lemma 9.9 in [28]) Let 8 € (0,1). If A is a subset of Bz(K,) (not neces-
sarily connected), with |A| < BK<, then

0] > (2d) 71 (1 = B/ ATV
Lemma 6.4 Suppose that A C Bz(K,) and the integer k > 1. Then for any 8 € (0,1),
there exist constants ¢ = c¢(a, e, k, B,d) > 0 and v = v(«, &, k, B) such that w.h.p.

g1(4) - cn%id

n
Hogmyd/ (=D <aj<prd | A] K,
ais k-connected

Proof The lemma can be deduced by the similar method as that of Lemma 5.10 in [27]

with a small modification, and we omit the proof details to save space. |



Lemma 6.5 If ac? > (d+3)¥/2 then w.h.p.

(1 (d+3)42
1 — e
1<Hzl<ln 1550 Py K H_ (2 T o0k '

Proof By Lemma 1.2 in [28] we obtain

K,

np
Pl {|Pn(") NSl < ﬁ}

i=1

_ n3/4 nﬂ
< d n n
<ictonn (2 ()

ETn

n—n3* (1 2
<nexp <_"\/d7+3‘|d (§+3aad(d+3)d/2) —0 as n— oo,

ETn

which is followed by our result. |

Lemma 6.6 Suppose that as® > (d +3)¥? and A C Bz(K,). Then for any B € (0,1),
there exists a constant ¢ = ¢(«, d, ) > 0 such that w.h.p.

in gl(A) > n2r2d+1
laj<prd A

Proof Since |A| < 3K, then by Lemma 6.3, we have

. o (1= BV
04] = (2d)71(1 = BY|A TV > e (45)
Combining (45) with Lemma 6.5, w.h.p.
2
G(A) (o (1 @\ oAl
|Aj<pKrd  |A] K24\~ \2 2ae? |A|<BK2 |A]
201 _ pl/d d/2 2
=B (1 @)Y
BL/d AT 2 2aed
which implies our result. |

For F C {1,2,--- ,n} and F*={1,2,--- ,n}\F, set

I R B SR A(EAOESAOT

-2 i€F,jeFc

We have the following lemma.

Lemma 6.7 Assume that a € (—2;;;,

that (25) holds. For any constant € > 0, there exists a constant ¢ = c¢(a,e,d) > 0 such that

oo], and that there exists a constant § > 0 such



(i) if ae® < (d+3)/2, then w.h.p.

@n > cmin {nri-i-lfn((&_’_g)rn), fn (Rc + (6+€)7‘n) } :

(log ) -1 /(d=1)
(i) if ae? > (d + 3)%/2, then w.h.p.
D, > enfn((0 + €)ry) min {Tffl, 1} .

Proof (i) For F C {1,2,---,n}, define F := {X;(0) : i € F} C X, to be the initial
positions of agents whose indexes are in F. For Dy, Dy C [0,1]%, set

ng-,D2(F) - ngyDzﬂl(F> = Z fn(”I - y” + 5Tn)
z€DNF ,yeDyNEFe
Take g(F) = gjo,1)4,[0,1¢(F), and define

& — inf EieF,jch Fn([[X:(0) — X;(0)|| + 674) — i g(F)
" FI<n/2 |F| |Fl<n/2 |F|

Now, we estimate ¢/,. Denote

Ap = {Zi H|SiNF| > %|Si an|} C Bz(Kn)

and
A;' = U S; N A,.
2, €EAF
Set f:=1— W. If |[Ap| > BKY, then |A%| < (1—B)K<. By Lemma 6.2, we have w.h.p.
Z 1S; N X, < c1e?| A% nrd < %,

ZiGA%

n
5.
Thus, there exist at least % vertices in F'¢ contained by Ap. For x € F°¢N Ap, without loss

where ¢ is the constant ¢ appearing in Lemma 6.2. If |[F| < n/2, then |F¢| = |[F°| >

of generality we assume that x € S; with z; € Ap. Then by the definition of Ar we can get
|[FNS;| > |FenS;| > 1, which indicates that there exists at least one vertex y such that
Yy E FNS;. Note that the length of the side of S; is less than er,/v/d + 3. Then w.h.p.

n ernVd
n 9(r) o 1/ (¢d+3 +5T") S Jalle+0)rn) (46)
FI<% |Apl>pKd |F| n/2 B 2 '
In the following we consider the case of [Ar| < K¢, Let Ay, As,---, Ay, be components

of Ap satisfying: 1) Ay, Ag, -+, Ay, are all [—“i”]—connected; 2) AiUA; 1<i#j<mpis
not (—Vd;?’}-connected; 3) |A1| > |Ag| > -+ > Ay, Without loss of generality, we assume that



|A;] > v(logn)¥ @V for 1 < i < ip, and |4;| < y(logn)¥ =Y for ip + 1 < i < mp, where
ip € [1,mp] and v is the same constant appearing in Lemma 6.4. By Lemma 6.4, we have

g1(4;) - CQnQT,%d

h.p., 47
Ar|<BKEI<i<in 4| — K, WP 47

where ¢y is the constant ¢ appearing in Lemma 6.4.
For i € [1,iF], it is easy to see that if z; € A; and z; € A with z;, ~ z;, then z; € A%, and

the distance of any pair of vertices in S, U S; is not greater than er,,. By the definition of Ap,

we have
fnl(e+0)r,
s = Y flle-uz 2EEI iy g0 20
z€S,NF,yes;NFe
Therefore, if Py(,) C &, then
fu((e +8)rn)
> 9s.s,(F) = > 91,8, (F) 2 =————01(4).  (48)
ZkEAi,ZjEA%,ZkNZj ZkEAi,ZjEAf,ZkNZj

Moreover, by (44), we see that Py, € A}, holds w.h.p.
Set

iR
Sll;‘ = U U Sk.
=1 ZkGAi
By (48), we have w.h.p.
iR
fn((e —i— 0)rn)
gstonss (F) > > 95,5 Z ———g1(4). (49)

=1 2 €Ai,2;€AG 2K~ 2j

For i € [ip + 1,mp], if U, ,c4, 5 N F¢ 2 (), then we have gp;.p!(F) > fu(ern) where
D) = UzjeAi Sy If UzjeAi Sjﬁf/'c = (), then by Lemma 2.1, we know that w.h.p. G(X,,; Rc+ery,)
is connected. Thus, there exists at least one vertex z* € (Uz ca, 55)¢ N &y such that the set

{y:ye U SiNF, 2" —yll < Re +ern}
Zj€A;

is not empty. Assume that z* € S (1 < k < K?) and zj, is the corresponding integer point of
Sk, then zp must be [—Vd;r?’]—connected with A;, and z;, € A%. Denote D) = UzjeAi S;USE. If

¥ e ﬁrc, then
9oy .Dy (F) > fn(Rc + (5 + E)Tn);
Otherwise, by the definition of Ar we have Sx N Fe # (), and

907,07 (F) > g5, 5,(F) > ful(e + 6)ra).



Set

mpg .
U D;7 ifUszAi SJﬁFC#(Du
§2i= =
U DY, otherwise.
i=ip+1

For z € Z4, it is easy to see that the number of different [—V‘iﬁ]—connected components which
is f—v‘iﬁ]—connec‘ced with z is less than (—“?31‘1. By the above argument we have w.h.p.

—d
L3 e = i) (e + 5+ <)) (50

9sz, 2 (F) = {

Let $3 = [0,1]4\(SL U S2). For z € $3 N F, we assume that = € Sy, (1 < k < K%), and
denote zy, € Bz(K,,) as the corresponding integer point of Sy. It is clear that z, € A%, and the
set S N F¢ is not empty. Thus,

gs3.53(F) = D fal(6+2)rn) =|SENFIfal(6+€)ra). (51)
z€S3NF

By the definition of Si and S% we have Leb(SL N S%) = 0. By (49), (50) and (51), we have
w.h.p.

9(F) = gs1 jo,1a\s (F) + gs2, 52 (F) + gz, 52 (F)

Z Il <€+(5 )Tn) g1(A) + |S’%ﬁﬁ|fn((5+5)rn)

T3]
+ ’V €+ -‘ (mF _iF)fn (Rc+ (6+5)Tn)
By the above inequality, we have w.h.p.
o IE) g(F)
acl<rg [F]  |Ar|28Ks ISLOF|+[S2NF|+]S%nF|
> inf 9(F) —
ArISBKE rednrd (U, |4il + (mr — ir)y(logn)?/@=D) + |53 0 F
fn((a"l'é)rn) A R 5
2 min ZZ 191( )7 |— l 5 ( +(§ ji)rn)7fn((5+5)rn)
clsdm"g Zi_ | A;l crenriy(logn)d/(d=1
o fn((e + 8)rp)can?r2d fn (Re+ (6 4+¢e)ry)
> min JIp——— SNCES:
crenri K, [YEE3)de, edpyrdy (log n)d/ (@-1)

where (47) is used in the last inequality. Combining this with (46), we obtain that there exists
a constant ¢ > 0 such that

. n (Re + 0+e¢ Tn
@/ > cmin {nerrlfn(((S +e)rn), f(lo(g n)(2d(1)/(d)1)) } w.h.p. (52)



By (25), we have for t > 0,
1X:(t) = X)) < [[Xi(0) = X;(0)[| + 6rn,  w.hop.

Hence, @,, > &}, holds w.h.p. Combining this with (52) yields our result.
(ii) The definition of ¢1, 8 and Ap is the same as that in (i). By (46) and Lemma 6.5, we
have

a/
o BT (L ) £ (22 4 o)

]

. g(F) 2aed
IFl<g.|Ar|>BK¢ |F| ~ n/2
nHZY (34 L) ful(e + )
> iK w.h.p. (53)

For the case of [Ap| < BKZ, by Lemmas 6.2 and 6.6 we have

g(F) fn((a + 5)7'77,) . gl(F) an2T2d+1
= f =z n 8)rn) w.h.p.,
Fi<giari<org [F] © cietrd  api<sxg [Ap] © et Fol(z +0)rn) whp

where ¢z is the same constant as ¢ appearing in Lemma 6.6. By (53) and the fact ¢, > &/,

yields our result. |

Proof of Lemma 5.3 Suppose k,, s < 1 —¢e. By (25), we have for ¢ > 0,
1Xa(t) = X; (@) = [1X:(0) = X;5(0)[| — 67, w.hup.

By (23) A, (t) < A, 5 holds w.h.p. for all ¢ > 0. By Lemma 5.2, we see that w.h.p. A, (¢) <

— %5 holds for all £ > 0. Thus, given A € R, if A < § — 1, then w.h.p. P(t) — AI,, is a strictly
diagonally dominant matrix and det(P(t) — 01,) # 0 for all ¢ > 0, which indicates that A is not
an eigenvalue of P(t). Thus, w.h.p.

~1, Vi 0. (54)

On the other hand, note that P(t) is a symmetric stochastic matrix, then the stationary
distribution of P(t) is (£, L,... 1) Therefore for ¢ > 0, the Cheeger’ constant of P(t) is not
less than @,,. By the Cheeger’s inequality (Proposition 6 in [33]), we have \2(t) < 1 — &2 for
t > 0. Combining this with Lemma 6.7 and (54), our results can be deduced. |



