
ar
X

iv
:1

91
2.

10
75

1v
1 

 [
m

at
h.

O
C

] 
 2

3 
D

ec
 2

01
9 Flocking with General Local Interaction and Large

Population∗

CHEN Ge · LIU Zhixin

Abstract This paper studies a flocking model in which the interaction between agents is described

by a general local nonlinear function depending on the distance between agents. The existing analysis

provided sufficient conditions for flocking under an assumption imposed on the system’s closed-loop

states; however this assumption is hard to verify. To avoid this kind of assumption the authors introduce

some new methods including large deviations theory and estimation of spectral radius of random

geometric graphs. For uniformly and independently distributed initial states, the authors establish

sufficient conditions and necessary conditions for flocking with large population. The results reveal

that under some conditions, the critical interaction radius for flocking is almost the same as the critical

radius for connectivity of the initial neighbor graph.

Keywords Consensus, Cucker-Smale model, flocking model, multi-agent systems, random geometric

graph.

1 Introduction

The flocking, which means the collective coherent motion of a large number of self-propelled

organisms, is an amazing phenomenon in nature. It attracts the researchers from diverse fields,

including biology, physics, computer science, mathematics and control theory, see [1–6] among

many others. In order to investigate the flocking phenomena exhibited in biological systems,

the well-known Vicsek model was proposed in [3], in which the heading is updated according

to the headings of the corresponding neighbors. Simulation results reveal that the headings

of all agents will be almost the same (called consensus or flocking) for large population size.

The theoretical study for the flocking behavior of the Vicsek model can be found in [7–10].

Inspired by the Vicsek model, Cucker and Smale also developed a flocking model in which

each agent interacts with all other agents and the interaction weights decay according to the

agents’ distance, and proposed some sufficient conditions for flocking which depend on system

parameters only[11]. Following their work, the theoretic results with different scenarios, for

example, the noisy environment, and the hierarchical structure, are given for the Cucker-Smale

model and its variants (see [12–20]).
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The assumption of global interaction between agents in the Cucker-Smale model may not

be applicable for some practical systems especially for systems with large population size. For

example, in [4], Buhl, et al. observed that the individual adjusts its direction to align with

its neighbors within an interaction range; In [21], Rosenthal, et al. found the golden shiner

(a kind of fish) uses simple, robust measures to assess behavioral changes of the others in

neighboring region, and the interaction weight depends on the metric distance and ranked

angular area; In [22], Rieu, et al. showed that the spatial correlation of the velocities of

Hydra cells decreases to zero rapidly with regarding the distance between cells, and remains

zero when the distance is large. For some systems, it may be even impossible to obtain the

explicit expression of interaction between agents (see [23]). To be more practical, Martin, et

al. proposed a multi-agent model in which the interaction between agents is represented by a

general non-negative and non-increasing function[24]. Also, they showed that the system will

achieve flocking behavior if the maximal perturbation allowed on the relative positions of agents

is not bigger than a constant, and the maximum difference among the initial velocities of all

agents is small enough[24]. However, how to guarantee the condition of the relative position

perturbation is unsolved.

This paper aims at providing some flocking conditions depending on initial state and sys-

tem parameters only for a multi-agent model with general local interaction. This problem is

challenging because the positions and velocities of all agents are coupled. Also, the local interac-

tion between agents are described by a general state-dependent function. These characteristics

make that many traditional tools like Lyapunov method cannot be used. Similar to [25–27],

we investigate the flocking behavior under random initial states. The large deviations theory is

introduced to estimate the maximum degree of the dynamic weighted graphs, and the extension

of the random geometric graph theory is employed to estimate the spectral radius of the initial

neighbor graphs. We establish sufficient conditions and necessary conditions for the flocking

behavior of our multi-agent model. In particular, we reveal that under some conditions, the

smallest possible interaction radius for flocking is almost the same as the critical connectivity

radius of the initial neighbor graphs.

The rest of this paper is organized as follows. In Section 2, we provide the problem form-

luation. The main results are given in Section 3. In Section 4, we present the approach to

estimating and calculating a key value which characterizes the property of nonlinear functions.

The proofs of our main results are put in Section 5. Concluding remarks are made in Section 6.

2 Problem Statement

2.1 A Nonlinear Flocking Model

This paper considers a nonlinear discrete-time multi-agent system composed of n spatially

distributed agents, each moving in a d-dimensional (d ≥ 2) Euclidean space R
d. Let V ,

{1, 2, · · · , n} to be the set of all agents. Set Xi(t) ∈ R
d and Vi(t) ∈ R

d to be the position and

velocity of agent i at time t respectively. Following [24] but with some modifications, for any



time t ≥ 0 and agent i ∈ V , Xi(t) and Vi(t) are updated according to the following equation,





Xi(t+ 1) = Xi(t) + Vi(t),

Vi(t+ 1) = Vi(t) +

n∑

j=1

fn (‖xi(t)− xj(t)‖) (Vj(t)− Vi(t)) ,
(1)

where the nonlinear function fn(·) denotes the local interaction weight, and ‖ · ‖ represents the

Euclidean norm. From an intuitive point of view, the larger the distance between agents, the

weaker the interaction weight fn(·) should be. Without loss of generality, we assume that fn(·)
is a non-increasing integrable function satisfying

fn(x)





> 0, 0 ≤ x < rn,

= 0, x ≥ rn,
(2)

where rn is called the interaction radius. In this paper, the commonly used circular or spherical

neighborhood is adopted. The pair of two agents is called neighbors if and only if their distance

is less than a pre-defined radius rn.

Let xij(t) and vij(t) denote the jth element of Xi(t) and Vi(t), respectively. Denote X(t) :=

(xij(t))n×d and V (t) := (vij(t))n×d. The system (1) can be rewritten into the following matrix

form:




X(t+ 1) = X(t) + V (t),

V (t+ 1) = P (t)V (t),
(3)

where P (t) = (pij(t))n×n is the weighted average matrix defined by

pij(t) =





fn (‖xi(t)− xj(t)‖) , if j 6= i,

1−
n∑

j=1,j 6=i

fn (‖xi(t)− xj(t)‖) , otherwise.

For any i ∈ V and t (= 0, 1, · · · ), we have
∑n

j=1 pij(t) = 1.

The objective of this paper is to investigate the flocking behavior of the system (3) with

large population. Follow [24] we say that the system (3) achieves a flocking behavior if the

velocities of all agents reach agreement, that is,

lim
t→∞

max
1≤i,j≤n

‖Vi(t)− Vj(t)‖ = 0. (4)

2.2 Random Geometric Graphs

Following our previous work [27], we assume that the n agents are independently and uni-

formly distributed in the unit cube [0, 1]d. Denote Xn = {X1(0), X2(0), · · · , Xn(0)} as the

set of initial positions of the n agents. We introduce a random geometric graph G(Xn; rn) to

describe the neighbor relations between agents at the initial time, with vertex set V and with

undirected edges connecting the pairs {Xi(0), Xj(0)} satisfying ‖Xi(0)−Xj(0)‖ ≤ rn; See [28]



for more properties of random geometric graphs. It is worth pointing out that the positions

are not independent and the properties of random geometric graphs cannot be used any more

when the agents move around.

In order to state our results clearly, we assume that the interaction radius has the following

expression,

lim
n→∞

(
nrdn/ logn

)
= α ∈ (0,∞]. (5)

Set Rc = Rc(n) :=
d

√
2d−1 logn

dπdn
, where πd denotes the volume of the unit ball in R

d. It is proved

that for d = 2, Rc is the critical connectivity radius of G(Xn; rn) in a probability sense (see [29]).

The following lemma shows that a similar result holds for d ≥ 3.

Lemma 2.1 The random geometric graph G(Xn; rn) is connected with high probability if

α > 2d−1

dπd
, and is not connected with high probability if α < 2d−1

dπd
, where α is defined by (5).

The proof of Lemma 2.1 is presented in Appendix 6.

We call rn the super-critical connectivity radius of G(Xn; rn) if α > 2d−1/(dπd), and we call

rn the sub-critical connectivity radius of G(Xn; rn) if α < 2d−1/(dπd).

2.3 Large Deviations Techniques

The large deviations techniques are applied to deal with the influence of the nonlinear

interaction weights fn(·). We first introduce some notations.

For a given constant δ ≥ 0, define

fn,δ(x) :=





fn(0), if x ≤ δrn,

fn(x− δrn), else.

By the definition of fn,δ, we have fn = fn,0. Let x0 = (12 ,
1
2 , · · · , 1

2 ) be the center point of

[0, 1]d, and set

ξn,δ := fn,δ
(∥∥X − x0

∥∥) ,

where X is a random variable uniformly distributed in [0, 1]d. For x ∈ R, define

In,δ(x) := sup
θ>0

{
θx − (n− 1) log

(
E
[
eθξn,δ

])}
. (6)

The function (6) is called a rate function in large deviations theory, see Chapter 1.2 of [30]. By

Lemma 2.2.5 in [30], we have

In,δ{(n− 1)E[ξn,δ]} = 0.

Let kn,δ be (n − 1)fn(0) for the case of V ar(ξn,δ) = Eξ2n,δ − (Eξn,δ)
2 = 0 (i.e., ξn,δ = fn(0)

is a degenerate random variable), and be a solution of the equation In,δ(x) = logn in ((n −
1)E[ξn,δ],∞) for the case of Var(ξn,δ) > 0. We will show that the solution uniquely exists in

Section 4. For the simplicity of expression, we denote ξn = ξn,0, In = In,0, and kn = kn,0.



2.4 Notation

In this paper, we investigate the flocking behavior of the system (3) on the probability space

(Ω ,F , P ), where the sample space Ω = [0, 1]dn, and the σ-algebra F is the collection of all the

Borel subsets of Ω . We say that a sequence of events An (n ≥ 1) occurs with high probability

(w.h.p.) if limn→∞ P (An) = 1.

A square matrix M = (mij)n×n is called stochastic, if all elements mij is nonnegative

and for 1 ≤ i ≤ n,
∑n

j=1 mij = 1. For a matrix A ∈ Rn×d, the Frobenius norm ‖ · ‖F and

the max norm ‖ · ‖max of the matrix A are, respectively, defined as ‖A‖F =
√∑

i,j a
2
ij and

‖A‖max := maxi,j |aij |.
For two positive scalar sequences g1(n) and g2(n), we say that (i) g1(n) = O(g2(n)) if there

exists a constant c > 0 and a value n0 > 0 such that g1(n) ≤ cg2(n) for any n ≥ n0; (ii)

g1(n) = Θ(g2(n)) if there exist positive constants c1 and c2 and a value n0 > 0 such that

c1g2(n) ≤ g1(n) ≤ c2g2(n) for any n ≥ n0; (iii) g1(n) = o(g2(n)) if limn→∞
g1(n)
g2(n)

= 0.

3 Main Results

In this paper, we proceed with our analysis under the system (3) with the following assump-

tions on the initial states of all agents and the interaction function fn(·):
A1) The initial positions {Xi(0)}ni=1 are independently and uniformly distributed in [0, 1]d.

A2) The nonlinear interaction weight fn(·) is a non-increasing integrable function satisfy-

ing (2), and the interaction radius rn satisfies (5).

To avoid repetitive description we do not state the above assumptions in our results.

3.1 Sufficient Conditions for Flocking

Let V0 := 1
n

∑n
i=1 Vi(0) and V := (V T

0 , V T
0 , · · · , V T

0 )T ∈ R
n×d. Denote

L(V (0)) = ‖V (0)− V ‖max

[
log

( ‖V (0)− V ‖F
‖V (0)− V ‖max

)
+ 1

]
. (7)

The sufficient condition for flocking can be stated as follows.

Theorem 3.1 Suppose that the parameter α defined by (5) satisfies α > 2d−1

dπd
, and that

there exist positive constants δ and ε such that kn,δ ≤ 1− ε holds for large n. Then flocking is

achieved w.h.p. if one of the following two conditions holds:

(i) αεd ≤ (d+ 3)d/2, and

L(V (0)) ≤ cδn2rn ·min

{
r2d+2
n f2

n((δ + ε)rn),
f2
n (Rc + (δ + ε)rn)

(logn)2d/(d−1)

}
; (8)

(ii) αεd > (d+ 3)d/2, and

L(V (0)) ≤ cδf2
n[(δ + ε)rn]n

2rn ·min
{
r2d+2
n , 1

}
, (9)

where c is a positive constant depending on d, ε and α†.

†Throughout this paper, a constant c depending on α means that c depends on α only for α < ∞, and will

not depend on α for α = ∞.



The proof of Theorem 3.1 is put in Subsection 5.2.

Remark 3.2 The value of kn,δ in Theorem 3.1 can be calculated by solving Equation (16),

and some theoretical results for kn,δ can also be obtained, see Proposition 4.1 in Section 4.

Remark 3.3 It is clear that L(V (0)) defined via (7) satisfies L(V (0)) ≤
(
log n
2 + 1

)

maxi,j |vij(0)|. Hence, Theorem 3.1 still holds if L(V (0)) in (8) and (9) is replaced by
(
log n
2 +1

)

maxi,j |vij(0)|, which means that under some conditions on the neighborhood radius and the

interaction weights, the system (3) can reach flocking if the initial velocities are suitably small.

In fact, under some further conditions on fn, the parameter δ in the condition of Theorem3.1

can be removed, see the following corollary.

Corollary 3.4 Let α > 2d−1

dπd
and rn = o(1). Suppose that there exists a constant ε > 0

such that kn ≤ 1− ε for large n, and

inf
n

(
1

fn(0)

∫ 1

0

fn(rny)y
d−1dy

)
= c0 > 0. (10)

Then the system (3) reaches flocking w.h.p., if one of the following two conditions holds:

(i) αεd ≤ (d+ 3)d/2 and

L(V (0)) ≤ cn2rn ·min

{
r2d+2
n f2

n (c1εrn) ,
f2
n (Rc + c1εrn)

(logn)2d/(d−1)

}
;

(ii) αεd > (d + 3)d/2 and L(V (0)) ≤ cn2r2d+3
n f2

n (c1εrn) , where c = c(d, ε, c0, α) and c1 =

c1(d, c0, α) are two positive constants.

The proof of Corollary 3.4 is put in Subsection 5.2.

Remark 3.5 From an intuitive point of view, the condition (10) means that the interac-

tion weight fn(·) steadily decreases to zero, and cannot decay very fast.

In the following, we provide an example to illustrate the result of Corollary 3.4.

Example 3.6 Let β > 1
d , c

′ ∈ (0, 1] and γ > 0 be three constants. Set

fn(x) :=





cn(1− xγ/rγn), if x ≤ rn,

0, otherwise,

where rn = n−1/d logβ n, cn = c′

πd logdβ n
. It is easy to verify that fn satisfies (10). Recalling

that ξn = ξn,0 = fn(‖X − x0‖), we obtain the following inequality:

E [ξn] =

∫ rn

0

cn
(
1− r−γ

n xγ
)
dπdx

d−1dx =
γcnπdr

d
n

γ + d
≤ γ

(γ + d)n
.

Using the following Proposition 4.1 (iii), we have for large n, kn = nE[ξn](1+o(1)) < 1− d
2(γ+d) .

Thus, by Remark 3.3 and Corollary 3.4 (ii), the system (3) reaches flocking w.h.p., if the velocity

satisfies maxi,j |vij(0)| ≤ cn
−3
d (log n)3β−1 with c > 0 being a positive constant.



We also give some simulations for Theorem 3.1 and Corollary 3.4. Assume the space dimen-

sion d = 2, the interaction radius rn =
√
α logn/n with α being a positive constant, and the

weight function

fn(x) =





1−x/rn
απ logn , if x ≤ rn,

0, otherwise.

If α > 1/π, we can get

n2rn ·min



r6nf

2
n (εrn) ,

f2
n

(√
logn/(πn) + εrn

)

log4 n



 = n2r7nf

2
n (εrn) = Θ

(
logn

n

)3/2

, (11)

where ε is a small positive constant. The initial positions {Xi(0)}ni=1 are independently and

uniformly chosen from the area [0, 1]2, and the initial velocities are set to be

Vi(0) =





(−v′n− 3
2 log

1
2 n, 0), if Xi1(0) ≤ 1/2

(v′n− 3
2 log

1
2 n, 0), otherwise

, ∀1 ≤ i ≤ n,

where v′ is a positive constant. By (7) we can obtain

L(V (0)) ≈ v′n− 3
2 log

1
2 n(log n+ 1) = Θ

(
n− 3

2 log
3
2 n
)
. (12)

Simulations are carried out by choosing n = 600, and the results are shown in Figure 1. It is

shown that there is a demarcation line v′c(α) concerning with v′ and α between the behaviors

of flocking and no flocking. From (11), (12) and Figure 1, the sufficient conditions for flocking

in Theorem 3.1 and Corollary 3.4 are tight in the order under this kind of interaction functions.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

← v
c
’(α)

Flocking

No flocking

α

v’

Figure 1 There is a demarcation line v
′
c
(α) concerning with v

′ and α. The flocking

behavior can be reached below the line, while cannot be reached above the

line.



3.2 Necessary Conditions for Flocking

By Remark 3.3, we see that for small initial velocity, the connectivity of neighbor graphs

can be maintained, and consequently the flocking behavior can be achieved. However, when the

initial velocities become larger and larger, the connectivity of the dynamical neighbor graphs

may be lost, even though the initial graph is connected. For such a case, the investigation

for flocking becomes much harder. In order to simplify the analysis for the dependency of the

flocking conditions on initial velocities of the agents, we introduce the definition v-flocking as

follows.

Definition 3.7 Let v > 0 be a constant. If the system (3) reaches flocking for any initial

velocities satisfying maxi∈V ‖Vi(0)‖ ≤ v, then we say the system reaches v-flocking.

From Definition 3.7, we see that the v-flocking behavior monotonically depends on v. For

any initial positions of the agents, there exists a critical value vc such that the v-flocking can be

achieved for v < vc, and cannot be achieved for v > vc. The investigation of vc is an interesting

but very hard topic, and it falls into our future research.

The necessary conditions for v-flocking are presented as follows.

Theorem 3.8 (i) If α < 2d−1

dπd
, then the system (3) cannot achieve v-flocking w.h.p. for

any v > 0.

(ii) If α ≥ 2d−1

dπd
and rn = o(1), then the system (3) cannot reach (2−d−1knrn)-flocking w.h.p.

for kn = Θ(1) and kn < 2d, and also cannot reach (12knrn)-flocking w.h.p. for kn = o(1).

The proof of Theorem 3.8 is put in Subsection 5.3.

Under the definition of v-flocking, the sufficient conditions for flocking can be stated in a

more clear manner.

Corollary 3.9 Assume that α > 2d−1

dπd
and rn = o(1), and that there exists a constant

ε > 0 such that for large n, (i) ε ≤ kn ≤ 1− ε; (ii) fn(εrn) > εfn(0); and (iii) fn (Rc + εrn) >

r2n(logn)
2d/(d−1)n−2. Then the system (3) reaches (cr3n(log n)

−1)-flocking w.h.p., where c =

c(d, ε, α) > 0 is a constant.

The above corollary can be directly deduced from Corollary 3.4.

From Theorem 3.8 (i) and Corollary 3.9, we see that in a probability sense, Rc can be

considered as the smallest possible interaction radius for flocking, and also the critical inter-

action radius for v-flocking with v ≤ cr3n(log n)
−1. We illustrate the result of Theorem 3.8

and Corollary 3.9 in Figure 2 where the interaction function fn(·) satisfies the conditions of

Corollary 3.9.

4 Calculation and Estimation of kn,δ

In this section, we present the approach to the estimation and calculation of kn,δ. We only

consider the case of Var(ξn,δ) > 0. Note that In,δ((n− 1)E[ξn,δ]) = 0, and

lim
x→∞

In,δ(x) ≥ lim
x→∞

{
x− (n− 1) log

(
E
[
eξn,δ

])}
= ∞.



By the continuity of In,δ(x), we see that the solution of the equation In,δ(x) = logn in ((n −
1)E[ξn,δ],∞) exists. Furthermore, by Cauchy-Schwarz inequality, we have

d2

d2θ
log
(
E
[
eθξn,δ

])
=

E
[
eθξn,δ

]
E
[
ξ2n,δe

θξn,δ

]
−
(
E
[
ξn,δe

θξn,δ
])2

(E [eθξn,δ ])
2 > 0. (13)

(0, 0) 2d− 1

d

cr
3
n

logn

k n rn

2d+1

v

No

No Yes

NoNo

Unknown

d̟

Figure 2 “Yes” (or “No”) means that in a probability sense, the system (3) can

(cannot) reach v-flocking, and “unknown” means that we cannot judge

whether the system reaches v-flocking

Hence, the following equation

d

dθ

{
θx − (n− 1) log

(
E
[
eθξn,δ

])}
= x− (n− 1)E

[
ξn,δe

θξn,δ
]

E [eθξn,δ ]
= 0 (14)

has a unique solution θ∗(x) for any x > 0. Moreover, by (13), the right-hand side of (15) is

strictly monotonically increasing. Thus, the equation

logn = In,δ(x) = θ∗(x)x − (n− 1) log
(
E
[
eθ

∗(x)ξn,δ
])

= θ∗(x)
(n− 1)E

[
ξn,δe

θ∗(x)ξn,δ
]

E
[
eθ

∗(x)ξn,δ
] − (n− 1) log

(
E
[
eθ

∗(x)ξn,δ

])
(15)

with respect to θ∗(x) also has a unique solution θn,δ. By (14), we know that kn,δ is the unique

solution of In,δ(x) = log n in ((n − 1)E[ξn,δ],∞). Combining (15) with (14), we see that kn,δ

and θn,δ can be obtained by solving the following equations,

(n− 1)E
[
ξn,δe

θn,δξn,δ

]

E
[
eθn,δξn,δ

] =
logn+ (n− 1) log

(
E
[
eθn,δξn,δ

])

θn,δ
= kn,δ. (16)



Furthermore, if fn does not decay very fast, there are some theoretical results to estimate

kn,δ, kn(=: kn,0) and θn(=: θn,0).

Proposition 4.1 Suppose that rn = o(1), and fn satisfies (10). Let c0 be the constant

appearing in (10). Then the following results hold:

(i) kn = Θ(nrdnfn(0)) and θn = O(1/fn(0));

(ii) There exists a constant c1 = c1(d, α, c0) > 0, such that for any δ ∈ (0, 1), kn,δ ≤
(1 + c1δ)kn;

(iii) For the case of α = ∞, kn = nE[ξn](1 + o(1)) and θn = o(1/fn(0)).

The proof of Proposition 4.1 is in Appendix 6.

Using a similar method as that of Proposition 4.1, we obtain the following results.

Corollary 4.2 Suppose rn = o(1). Then for any constant δ > 0, we have kn,δ =

Θ(nrdnfn(0)) and θn,δ = O(1/fn(0)). If α = ∞, then kn,δ = nE[ξn,δ](1 + o(1)) and θn,δ =

o(1/fn(0)).

In the following, we present two examples to show how to calculate the value of kn. For this,

we introduce some notations in large deviations theory. Define H : [0,∞) → R by H(0) = 1

and

H(a) = 1− a+ a log a, a > 0.

Note that H(1) = 0 and the unique turning point of H is the minimum at 1. Also H(a)/a is

increasing on (1,∞). Let H−1
− : [0, 1] → [0, 1] be the unique inverse of the restriction of H to

[0, 1], and let H−1
+ : [0,∞) → [1,∞) be the inverse of the restriction of H to [1,∞).

Example 4.3 Set rn = cn−1/d(logn)1/d and

fn(x) :=





bn, x ≤ rn,

0, x > rn,

where c and bn are positive constants. Recall that ξn = ξn,0 = fn(‖X − x0‖), where x0 =

(12 ,
1
2 , · · · , 1

2 ) ∈ R
d and X is a random variable distributed uniformly in [0, 1]d. To solve (16)

we first calculate the following equation,

E
[
eθnξn

]
= P (‖X − x0‖ ≤ rn)e

θnbn + P (‖X − x0‖ > rn)

= 1 +
(
eθnbn − 1

)
πdc

dn−1 log n. (17)

Similarly,

E
[
ξne

θnξn
]
= eθnbnπdc

dbnn
−1 logn. (18)

By Proposition 4.1 (i), we have θnbn = θnfn(0) = O(1). Then by (17), we obtain E[eθnξn ] =

1 + o(n−1/2) and

logE
[
eθnξn

]
=
(
eθnbn − 1

)
πdc

dn−1 logn+O(n−2 log2 n). (19)



Substituting (18) and (19) into (16), we have

θnbne
θnbn − eθnbn =

(
1

πdcd
− 1

)(
1 + o

(
n−1/2

))
+ o

(
n−1/2

)
. (20)

By the definition ofH−1
+ , we see that log(H−1

+ ( 1
πdcd

)) is the unique solution of the equation xex−
ex = 1

πdcd
−1 with respect to x. Substituting this into (20) we have θn = 1

bn
log(H−1

+ ( 1
πdcd

))(1+

o(1)). Furthermore, by (16) we have kn = H−1
+ ( 1

πdcd
)πdc

dbn log n(1 + o(1)).

Example 4.4 Let rn = cn−1/d(logn)1/d and

fn(x) :=





bn
(
1− r−1

n x
)
, x ≤ rn,

0, x > rn,

where c and bn are positive constants. Similar to (17) and (18) we have

E
[
eθnξn

]
= 1− πdr

d
n +

∫ rn

0

eθnbn(1−r−1
n x)dπdx

d−1dx

= 1− πdr
d
n + dπdr

d
n

∫ 1

0

eθnbny(1− y)d−1dy,

E
[
ξne

θnξn
]
=

∫ rn

0

bn
(
1− r−1

n x
)
eθnbn(1−r−1

n x)dπdx
d−1dx

= dπdr
d
nbn

∫ 1

0

yeθnbny(1− y)d−1dy.

By Proposition 4.1 (i), we have θnbn = θnfn(0) = O(1). Similar to (20) we have

θnbn

∫ 1

0

yeθnbny(1− y)d−1dy −
∫ 1

0

eθnbny(1 − y)d−1dy

=

(
1

dπdcd
− 1

d

)(
1 + o

(
n−1/2

))
+ o

(
n−1/2

)
. (21)

Let x∗ be the unique solution of the equation

x

∫ 1

0

yexy(1 − y)d−1dy −
∫ 1

0

exy(1 − y)d−1dy =
1

dπdcd
− 1

d

with respect to x. Substituting x∗ into (21) we can get θn = x∗

bn
(1 + o(1)). Substituting this

into (16) we obtain

kn = dπdc
dbn logn

(∫ 1

0

yex
∗y(1− y)d−1dy

)
(1 + o(1)).

5 Proofs of Main Results

5.1 Key Lemmas

In order to prove the main results of this paper, we first present some key lemmas. By (3)

we have V (t + 1) = P (t) · · ·P (0)V (0). To study the flocking behavior, we need to deal with



the convergence of the matrix product P (t) · · ·P (0). Compared with our previous work [27], a

crucial point lies in the fact that the weighted averagematrix P (t) is determined by the nonlinear

function fn(·) and the distance between agents. We apply the large deviations techniques to

deal with this.

Introduce the maximum weighted degree of all agents at time t as

∆n(t) := max
1≤i≤n

{ ∑

1≤j≤n,j 6=i

fn(‖Xi(t)−Xj(t)‖)
}
.

Note that fn(·) is a non-increasing function. If there exists a positive constant δ such that

‖Xi(t)−Xj(t)‖ ≥ ‖Xi(0)−Xj(0)‖ − δrn, (22)

then by the definition of fn,δ(·) we have

fn(‖Xi(t)−Xj(t)‖) ≤ fn,δ(‖Xi(0)−Xj(0)‖). (23)

Thus, we have the following lemma of ∆n(t).

Lemma 5.1 Assume that there exists a positive constant δ, such that

∆n,δ := max
1≤i≤n





∑

1≤j≤n,j 6=i

fn,δ(‖Xi(0)−Xj(0)‖)



 ≤ 1,

and that the inequality (22) holds for all i and j and all t ≥ 0, then we have ∆n(t) ≤ 1.

It is clear that under the conditions of Lemma 5.1, P (t) (t ≥ 0) is a stochastic matrix. The

stochastic matrices may bring convenience for the convergence property of P (t) · · ·P (0).

For ∆n,δ, we have the following results.

Lemma 5.2 Given a constant δ ≥ 0, suppose that Var(ξn,δ) > 0 holds. Then,

∆n,δ ≤ kn,δ(1 + o(1)), w.h.p. (24)

The large deviations techniques are used in the proof of Lemma 5.2, and the proof details

are put in Appendix 6.

In the following, we study the eigenvalues of the matrix P (t). Under the conditions of

Lemma 5.1, P (t)(t ≥ 0) is a symmetric stochastic matrix. Thus, the eigenvalues of P (t) are all

real numbers. We denote λi(t) = λi(t, n) as the i-largest eigenvalues of P (t), and arrange all

eigenvalues according to the following order,

1 = λ1(t) ≥ λ2(t) ≥ · · · ≥ λn(t) ≥ −1.

The essential spectral radius λ(t) of P (t) is defined as λ(t) = λ(t, n) := max{|λ2(t)|, |λn(t)|},
which plays a key role for the convergence of the matrix product P (t) · · ·P (0).

Lemma 5.3 Assume that α defined by (5) satisfies α > 2d−1

dπd
, and that there exists a

constant δ > 0, such that w.h.p. the following inequality holds,

sup
i,j,t

{‖Xi(t)−Xj(t)−Xi(0) +Xj(0)‖} ≤ δrn. (25)



Furthermore, for any given constant ε > 0, kn,δ satisfies kn,δ ≤ 1 − ε. Then the essential

spectral radius λ(t) (t > 0) satisfies the following inequalities:

(i) If αεd ≤ (d+ 3)d/2, then w.h.p.

λ(t) ≤ 1− cn2 ·min

{
r2d+2
n f2

n((δ + ε)rn),
f2
n (Rc + (δ + ε)rn)

(logn)2d/(d−1)

}
;

(ii) If αεd > (d+ 3)d/2, then w.h.p.

λ(t) ≤ 1− cn2f2
n((δ + ε)rn)min

{
r2d+2
n , 1

}
,

where c is a positive constant depending on α, ε and d.

The proof of Lemma 5.3 is put in Appendix 6.

5.2 Proofs of Theorem 3.1 and Corollary 3.4

Proof of Theorem 3.1 By the fact that the row sum of P (t) is 1, we see that P (t)V = V .

By (3), we have

V (k + 1) = P (k)P (k − 1) · · ·P (0)V (0) = P (k)P (k − 1) · · ·P (0)(V (0)− V ) + V . (26)

Using (26) and Corollary 1 in [11], we obtain that

‖V (k)− V ‖F ≤ ‖V (0)− V ‖F
k−1∏

i=0

λ(i). (27)

Denote

λ∗ =





1− cn2min

{
r2d+2
n f2

n((δ + ε)rn),
f2
n (Rc + (δ + ε)rn)

(log n)2d/(d−1)

}
, if αεd ≤ (d+ 3)d/2,

1− cn2f2
n((δ + ε)rn)min

{
r2d+2
n , 1

}
, else,

where c is the same constant appearing in Theorem 5.3. Take

k∗ =

⌈
log 1

λ∗

( ‖V (0)− V ‖F
‖V (0)− V ‖max

)⌉
.

It is easy to see that k∗ satisfies k∗ ≤ 2
1−λ∗ log

(
‖V (0)−V ‖F

‖V (0)−V ‖max

)
. By the condition of the theorem,

we have

‖V (0)− V ‖max

(
log

( ‖V (0)− V ‖F
‖V (0)− V ‖max

)
+ 1

)
≤ (1− λ∗)δrn

4
√
d

, (28)

then

2‖V (0)− V ‖max

(√
dk∗ +

1

1− λ∗

)
≤ δrn. (29)

We assert that if (29) holds, then we have w.h.p.

max
1≤i,j≤n

dij(k) ≤ δrn, ∀k ≥ 0, (30)



where dij(k) = ‖Xi(k)−Xj(k)−Xi(0) +Xj(0)‖.
We prove the aforementioned assertion by induction. It is clear that (30) holds for k = 0.

We assume that the assertion holds for 0 < s ≤ k, that is, w.h.p.

max
i,j

dij(s) ≤ δrn, ∀ 0 ≤ s ≤ k.

By Lemmas 5.1 and 5.2, the matrix P (s) (0 ≤ s ≤ k) is stochastic. Denote

a(t) :=

(
d∑

j=1

(
max

1≤i1,i2≤n
|vi1,j(t)− vi2,j(t)|2

))1/2

.

It is clear that the sequence a(t) is monotonically non-increasing, and thus

a(t) ≤ a(0) ≤ 2
√
d‖V (0)− V ‖max. (31)

Moreover, using Lemma 5.3, we have λ(s) ≤ λ∗ for s ≤ k. By (27) and (31), we obtain that

w.h.p.

max
i,j

{dij(k + 1)} = max
i,j

{
∥∥

k−1∑

s=0

(Vi(s)− Vj(s))
∥∥
}

≤ k∗a(0) + 2

k∑

s=k∗

(
max

i

∥∥Vi(s)− V0

∥∥
)
≤ k∗a(0) + 2

k∑

s=k∗

‖V (s)− V ‖F

≤ k∗2
√
d‖V (0)− V ‖max + 2‖V (0)− V ‖F

k∑

s=k∗

(λ∗)s

≤ 2‖V (0)− V ‖max

(√
dk∗ +

1

1− λ∗

)
≤ δrn. (32)

The assertion holds for s = k + 1. By induction, the assertion holds for all s ≥ 0.

By (27), (30) and Lemma 5.3, w.h.p.

lim
k→∞

‖(V (k)− V )‖F ≤ ‖V (0)− V ‖F · lim
k→∞

(λ∗)k = 0

holds for all large n. Substituting the value of λ∗ into (28) yields our result.

Proof of Corollary 3.4 By Proposition 4.1, we see that there exists a constant c′ =

c′(d, α, c0) > 0, such that for any δ ∈ (0, 1), we have kn,δ ≤ (1 + c′δ)kn. Take δ = ε
2c′ , we

have kn,δ ≤
(
1 + ε

2

)
kn < 1 − ε

2 . Let c1 = 1 + 1
2c′ , the result follows by the same argument as

that of Theorem 3.1.

5.3 Proof of Theorem 3.8

(i) Set Mn := ⌊1/(2Rc)⌋−1, where Rc =
d

√
2d−1 logn

dπdn
, and ⌊x⌋ denotes the largest integer no

bigger than x. For any integer k ∈ [0,Mn], define the point xk := ((2k+1)Rc, 0, · · · , 0) ∈ [0, 1]d

and set the event

Ak :=
{
Xn ∩B(xk;n

− 1
d ) 6= ∅,Xn ∩

[
B(xk; rn + n− 1

d ) \B(xk;n
− 1

d )
]
= ∅
}
.



Let B(x; r) denotes the d-dimensional ball centered at x with the radius r. By the similar

analysis as that of the equation (4.13) in [27], we have for large n

P


 ⋃

0≤k≤Mn

Ak


 > 1− 2e−n1/4 −

[
1−

(
1− exp

{
− (n− n

3
4 )πd

2d−1n

})

· exp
{
− (n+ n

3
4 )πd[(rn + n− 1

d )d − 1
n ]

2d−1

}]Mn+1

> 1− 2e−n1/4 −
[
1− πd

2d
exp

{
−πdα

′ logn

2d−1

}]Mn+1

> 1− 2e−n1/4 − exp

{
−n−πdα′′

2d−1 + 1
d

}
,

where the constants α′, α′′ satisfy α < α′ < α′′ < 2d−1

dπd
. So, w.h.p. there must exist an integer

k ∈ [0,Mn] such that Ak happens. Without loss of generality we assume A0 happens, then

there exist some agents lying in B(x0;n
−1/d) which have no neighbor in [0, 1]d \ B(x0;n

−1/d)

at the initial time. Taking their initial velocities to be (0,−v, · · · ,−v) and the other agents’

initial velocities to be (0, v, · · · , v) for any v > 0, we see that the system (3) cannot achieve

flocking w.h.p.

(ii) Let ĩ be the index of the agent whose position satisfies ‖Xĩ(0)‖ ≤ ‖Xi(0)‖ for any

1 ≤ i ≤ n. Then, for any constant ε > 0 we have

P

(
‖Xĩ(0)‖ > 2

(
ε logn

πdn

)1/d
)

= P

(
n⋂

i=1

{
‖Xi(0)‖ > 2

(
ε logn

πdn

)1/d
})

=

(
1− ε logn

n

)n

= n−ε(1 + o(1)),

which indicates that ‖Xĩ(0)‖ ≤ 2( ε log n
πdn

)1/d holds w.h.p. For some constant v0, we set Ṽi(0) =

(− v0√
d
, · · · ,− v0√

d
)T, and Vi(0) = −Ṽi(0) for i 6= ĩ.

If kn = Θ(1), we take v0 = 2−d−1knrn. By (3), w.h.p. all elements of Xĩ(1) = Xĩ(0)+ Ṽi(0)

are less than 0, and ‖Xĩ(1) −Xi(1)‖ ≥ 2−dknrn holds for i 6= ĩ. By Lemma 5.2, it is easy to

see that there exists a small constant ε > 0 such that

d̃i(1) =
∑

i6=ĩ

fn(‖Xĩ(1)−Xi(1)‖) ≤
(1− ε)kn

2d
w.h.p..

Thus, for i 6= ĩ,

‖Xĩ(2)−Xi(2)‖
= ‖Xĩ(1) + [1− 2d̃i(1)]Ṽi(0)−Xi(1) + [1− 2fn(‖Xĩ(1)−Xi(1)‖)]Ṽi(0)‖

≥ 2−dknrn

(
1 +

[
1−

(
1− ε

2

)
kn
2d

])
w.h.p.



Repeating the above process we have for all t > 1,

‖Xĩ(t)−Xi(t)‖

≥2−dknrn

(
1 +

[
1−

(
1− ε

2

)
kn
2d

]
+ · · ·+

[
1−

(
1− ε

2

)
kn
2d

]t−1
)

w.h.p.

Therefore, there exists a time instant T such that w.h.p. for all i 6= ĩ: (i) ‖Xĩ(T )−Xi(T )‖ ≥ rn;

(ii) all elements of Ṽi(T ) are negative; (iii) all elements of Vi(T ) are positive. For such a case,

the system cannot reach flocking.

If kn = o(1), we take v0 = 1
2knrn. Similarly we see that there exists a constant ε > 0 such

that w.h.p. d̃i(1) ≤ (1− ε)kn, and

‖Xĩ(t)−Xi(t)‖ ≥ knrn

(
1 +

[
1−

(
1− ε

2

)
kn

]
+ · · ·+

[
1−

(
1− ε

2

)
kn

]t−1
)

holds for t > 1. Thus, the system cannot reach flocking.

6 Concluding Remarks

A fundamental issue in the investigation of multi-agent systems is how the local interac-

tions affect the collective behavior of the overall systems. This paper studied a discrete-time

nonlinear multi-agent system, where the nonlinear interaction function decays according to the

distance between agents. By applying large deviations techniques to estimate the essential

spectral gap of average matrices whose elements are determined by the nonlinear function and

the distance between agents, we provide sufficient conditions and necessary conditions for the

flocking behavior. Some interesting problems deserve to be further investigated, for example,

how to obtain the critical value of v for v-flocking of our multi-agent model, and how to analyze

the flocking behavior of the continuous-time multi-agent models.
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Appendix

Proof of Lemma 2.1

The lemma holds for d = 2, see [31] and [32]. In the following, we prove the lemma for

d ≥ 3.

For α > 2d−1

dπd
, by Theorem 7.14 in [28], we see that the minimum degree of G(Xn; rn) is

equal to Θ(nrdn) w.h.p., which indicates that there is no isolated vertex in G(Xn; rn) w.h.p.

Following the proof idea of Theorem 3.1 in [31], we see that for d ≥ 3, the probability that

G(Xn; rn) is not connected has the same order as the probability that the graph G(Xn; rn) has

isolated vertices. Thus, the graph G(Xn; rn) is connected w.h.p.

For α < 2d−1

dπd
, by the proof of Theorem 3.8 (i) we see that for some vertex k, w.h.p. there

exist some vertices lying in B(xk;n
−1/d) which do not have neighbors in [0, 1]d \B(xk;n

−1/d).

Thus, the graph G(Xn; rn) is not connected w.h.p. This completes the proof of the lemma.

Proof of Proposition 4.1

(i) By the definition of ξn, we have

E
[
eθnξn

]
= 1− πdr

d
n + dπd

∫ rn

0

eθnfn(x)xd−1dx

= 1− πdr
d
n + dπdr

d
n

∫ 1

0

eθnfn(rny)yd−1dy,

E
[
ξne

θnξn
]
= dπdr

d
n

∫ 1

0

fn(rny)e
θnfn(rny)yd−1dy.

Substituting the above two equations into (16) and using the assumption θn = O(1/fn(0)), we

have

nθndπdr
d
n

∫ 1

0

fn(rny)e
θnfn(rny)yd−1dy

=

(
logn+ n

(
−πdr

d
n + dπdr

d
n

∫ 1

0

eθnfn(rny)yd−1dy

))
(1±O(rdn)),



which indicates that
∫ 1

0

(
θnfn(rny)− 1

)
eθnfn(rny)yd−1dy =

(
logn

dπdnrdn
− 1

d

)(
1±O

(
rdn
))

±O
(
rdn
)
. (33)

Let θ∗n denote a solution of the following equation

∫ 1

0

(θnfn(rny)− 1) eθnfn(rny)yd−1dy =
logn

dπdnrdn
− 1

d
(34)

with respect to θn. Note that if θn = 0 then

the left side of (34) < the right side of (34), (35)

and if θn > logn/(dπdc0nr
d
nfn(0)), then by (10),

the left side of (34)

=
1

d

[∫ 1

0

θnfn

(
rnz

1/d
)
eθnfn(rnz

1/d)dz −
∫ 1

0

eθnfn(rnz
1/d)dz

]

≥ 1

d

[∫ 1

0

θnfn

(
rnz

1/d
)
dz

∫ 1

0

eθnfn(rnz
1/d)dz −

∫ 1

0

eθnfn(rnz
1/d)dz

]

≥ 1

d
(θndc0fn(0)− 1)

∫ 1

0

eθnfn(rnz
1/d)dz

> the right side of (34), (36)

where the following inequality is used

a1b1 + · · ·+ ambm
m

− a1 + · · · am
m

· b1 + · · ·+ bm
m

=
1

m2

∑

1≤i<j≤m

(ai − aj)(bi − bj) ≥ 0

with {ai, 1 ≤ i ≤ m} and {bi, 1 ≤ i ≤ m} being two real number sequences satisfying a1 ≥ a2 ≥
· · · ≥ am and b1 ≥ b2 ≥ · · · ≥ bm. Hence, by (35) and (36) we have

0 < θ∗n <
logn

dπdc0nrdnfn(0)
. (37)

By (37) and (5), we have θ∗n = O(1/fn(0)). Substituting this into (33), we see that the

equation (16) has a solution near to θ∗n. By the uniqueness of the solution of (16) we obtain

that θn = θ∗n(1 + o(1)) = O(1/fn(0)). Moreover, by the first equation of (16), we have

kn = ndπdr
d
n

∫ 1

0

fn(rny)e
θ∗
nfn(rny)yd−1dy(1 + o(1)) = Θ(nrdnfn(0)). (38)

(ii) Similar to the analysis of (i), we have

E
[
eθξn,δ

]
= 1− πdr

d
n(1 + δ)d + dπdr

d
n(1 + δ)d

∫ 1

0

eθfn,δ[(1+δ)rny]yd−1dy,

E
[
ξn,δe

θξn,δ
]
= dπdr

d
n(1 + δ)d

∫ 1

0

fn,δ[(1 + δ)rny]e
θfn,δ[(1+δ)rny]yd−1dy.



Now, we consider the solution of the following equation,

∫ 1

0

(θfn,δ[(1 + δ)rny]− 1) eθfn,δ[(1+δ)rny]yd−1dy =
logn

dπdnrdn(1 + δ)d
− 1

d
. (39)

Define g(y) := fn,δ[(1 + δ)rny]− fn(rny). It is clear that g(y) ≥ 0 for y ≤ 1. Note that

∫ 1

0

(θ∗nfn,δ[(1 + δ)rny]− 1) eθ
∗
nfn,δ[(1+δ)rny]yd−1dy − logn

dπdnrdn(1 + δ)d
+

1

d

>

∫ 1

0

{θ∗n[fn(rny) + g(y)]− 1} eθ∗
nfn(rny)eθ

∗
ng(y)yd−1dy

−
∫ 1

0

(θ∗nfn(rny)− 1) eθ
∗
nfn(rny)yd−1dy

=

∫ 1

0

(θ∗nfn(rny)− 1) eθ
∗
nfn(rny)

(
eθ

∗
ng(y) − 1

)
yd−1dy

+

∫ 1

0

θ∗ng(y)e
θ∗
nfn(rny)eθ

∗
ng(y)yd−1dy

>

∫ 1

0

eθ
∗
nfn(rny)

[
θ∗ng(y)e

θ∗
ng(y) − eθ

∗
ng(y) + 1

]
yd−1dy

=

∫ 1

0

eθ
∗
nfn(rny)

[ ∞∑

i=2

i− 1

i!
(θ∗ng(y))

i

]
yd−1dy > 0.

If θ = 0, then

the left side of (39) < the right side of (39).

Thus, the solution of equation (39) satisfies θ∗n,δ ∈ (0, θ∗n). With a similar argument, we have

θn,δ = θ∗n,δ(1 + o(1)). For any δ > 0, similar to (38) we have

kn,δ
ndπdrdn

= (1 + δ)d
∫ 1

0

fn,δ[(1 + δ)rny]e
θ∗
n,δfn,δ [(1+δ)rny]yd−1dy(1 + o(1))

=

∫ 1+δ

0

fn,δ(rnz)e
θ∗
n,δfn,δ(rnz)zd−1dz(1 + o(1)). (40)

By the definition of fn,δ and the fact that θ∗n,δ < θ∗n we have

∫ 1+δ

0

fn,δ(rnz)e
θ∗
n,δfn,δ(rnz)zd−1dz

=

∫ δ

0

fn(0)e
θ∗
n,δfn(0)zd−1dz +

∫ 1

0

fn(rnz)e
θ∗
n,δfn(rnz)(z + δ)d−1dz

<
δdfn(0)e

θ∗
nfn(0)

d
+

d−1∑

i=0

(
d− 1

i

)
δi
∫ 1

0

fn(rnz)e
θ∗
nfn(rnz)zd−1−idz

≤fn(0)e
θ∗
nfn(0)

(
δd

d
+

d−1∑

i=1

(
d− 1

i

)
δi

d− i

)
+

∫ 1

0

fn(rnz)e
θ∗
nfn(rnz)zd−1dz

=(1 +O(δ))

∫ 1

0

fn(rnz)e
θ∗
nfn(rnz)zd−1dz,



where the condition (10) and the fact θ∗n = O(1/fn(0)) are used in the last equation. Combining

this with (40) and (38) our result follows.

(iii) Immediate from (37) and (38).

Proof of Lemma 5.2

Before the proof of Lemma 5.2, we need to introduce some notations. For any n ∈ N, define
ρ(n) := ⌊n− 2n3/4⌋ and

În,δ(x) := sup
θ>0

{
θx− (ρ(n)− 1) log

(
E
[
eθξn,δ

])}
.

Take k̂n,δ > (ρ(n) − 1)E[ξn,δ] such that În,δ(k̂n,δ) = logn. Denote f̃n = f̃n,0, ξ̃n = ξ̃n,0,

Ĩn = Ĩn,0 and k̂n = k̂n,0.

Lemma 6.1 For k̂n and kn, we have limn→∞(k̂n/kn) = 1.

Proof First, by

În(kn) ≥ In(kn) = logn = În(k̂n),

the inequality kn ≥ k̂n can be derived.

Assume that there exists a constant ε > 0 such that kn ≥ (1 + ε)k̂n. Then for large n,

In(kn) ≥ In

(
(1 + ε)k̂n

)

= sup
θ>0

{
θ(1 + ε)k̂n − (n− 1) log

(
E
[
eθξn

])}

≥ n− 1

ρ(n)− 1
sup
θ>0

{
θ
(
1 +

ε

2

)
k̂n − (ρ(n)− 1) log

(
E
[
eθξn

])}

≥ n− 1

ρ(n)− 1

(
1 +

ε

2

)
În(k̂n)

> logn = In(kn),

which leads to contradiction. Our result yields.

Proof of Lemma 5.2 For simplicity of expressions, we consider the case of δ = 0, and it is

easy to extend our results to the case of δ > 0.

Denote di = di(n) :=
∑

1≤j≤n,j 6=i fn(‖Xi(0)−Xj(0)‖). For kn > (n− 1)E[ξn], by (2.2.12)

in [30], we have

P (di > kn) ≤ P


 ∑

1≤j≤n,j 6=i

fn
(∥∥x0 −Xj(0)

∥∥) > kn




= P


 1

n− 1

∑

1≤j≤n,j 6=i

fn
(∥∥x0 −Xj(0)

∥∥) > kn
n− 1




≤ exp

(
−(n− 1) sup

θ>0

{
θkn
n− 1

− log
(
E
[
eθξn

])})
= e−In(kn), (41)



where In(·) is defined by (6). For any ε > 0 we have

In((1 + ε)kn)

≥ θnkn(1 + ε)− (n− 1) log
(
E
[
eθnξn

])
(according to (6))

≥ (1 + ε)
(
θnkn − (n− 1) log

(
E
[
eθnξn

]))
(according to (16))

= (1 + ε) logn. (42)

Combining (42) with (41), we obtain

P (di > (1 + ε)kn) ≤ e−In((1+ε)kn) ≤ e−(1+ε) log n = n−1−ε. (43)

Set

Fn :=

n⋃

i=1

I{di>(1+ε)kn}.

By the Boole’s inequality and (43), we have

P (Fn) ≤
n∑

i=1

P (di > (1 + ε)kn) ≤ n−ε.

Thus,

P
(
∆n > (1 + ε)kn

)
= P (Fn) → 0 as n → ∞.

The inequality (24) holds.

Proof of Lemma 5.3

The proof of Lemma 5.3 mainly uses the idea appearing in the proof of Theorem 4.3 of [27].

We first introduce some notations.

For any constant ε ∈ (0, 1), set Kn = Kn(ε) := ⌈
√
d+3
εrn

⌉, where ⌈x⌉ is the smallest integer

no less than x. The unit square [0, 1]d is divided into Kd
n equal small squares with the length of

each side equal to 1/Kn. We denote these small squares as S1(n), S2(n), · · · , SKd
n
(n). Denote

Si = Si(n) for 1 ≤ i ≤ Kd
n. For each small square Si, 1 ≤ i ≤ Kd

n, let xi denote its center point,

and zi := Knxi + (12 ,
1
2 , · · · , 1

2 ) ∈ Z
d.

Let ‖ · ‖1 and ‖ · ‖∞ denote the l1-norm and infinity norm respectively. For any x, y ∈ Z
d,

if ‖x− y‖1 = 1, then we say that x and y are adjacent, written as x ∼ y. Given A ⊆ Z
d, if for

any x, y ∈ A, there exists a vertex sequence x1, x2, · · · , xn in A such that x ∼ x1, x1 ∼ x2, x2 ∼
x3, · · · , xn ∼ y, then we say A is connected. Similarly, if ‖x − y‖∞ ≤ k, k ≥ 1, we say that x

and y are k-adjacent, written as x ∼k y. Given A ⊆ Z
d, if for any x, y ∈ A, there exists a vertex

sequence x1, x2, · · · , xn in A such that x ∼k x1, x1 ∼k x2, x2 ∼k x3, · · · , xn ∼k y, then we say

A is k-connected. We see that for any k ≥ 1 if A is k-connected, then A must be connected. In

particular, a single vertex set {x} ⊂ Z
d is both connected and k-connected.

We define the lattice box BZ(Kn) by BZ(Kn) :=
∏d

i=1([1,Kn]∩ Z). It is clear that BZ(Kn)

is equal to the set {zi : 1 ≤ i ≤ Kd
n}. For A ⊂ BZ(Kn), we denote Ac := BZ(Kn)\A.



Let ∂A denote the internal vertex-boundary of A, that is, the set of vertex z ∈ A such that

{y ∈ Ac : ‖z − y‖1 = 1} is non-empty.

For η > 0, we use Po(η) to denote the Poisson random variable with parameter η. Define a

Poisson point process Pη as Pη := {Y1, Y2, · · · , YPo(η)}, where {Y1, Y2, · · · } is the set of vertices

independently and uniformly distributed in [0, 1]d and Po(η) is independent of {Y1, Y2, · · · }, see
Subsection 1.7 in [28]. For a Borel set A ⊆ [0, 1]d, |Pη ∩ A| is a Poisson random variable with

parameter ηLeb(A), where | · | denotes the cardinality and Leb(·) denotes the Lebesgue measure.

For any two Borel sets A1, A2 ⊆ [0, 1]d, if Leb(A1∩A2) = 0, then the random variables |Pη∩A1|
and |Pη ∩A2| are mutually independent. Set η(n) := n−n3/4, and let Pη(n) be a Poisson point

process in [0, 1]d with parameter η(n). Then, Pη(n) ⊆ Xn except when Po(η(n)) > n, and by

Lemma 1.4 in [28] we obtain

Pη(n) ⊆ Xn w.h.p. (44)

For any set A ⊆ BZ(Kn), define the function

g1(A) :=
∑

zi∈A,zj∈Ac,zi∼zj

|Pη(n) ∩ Si| · |Pη(n) ∩ Sj |.

For any zi ∈ BZ(Kn), we call zi open if Si ∩Pη(n) 6= ∅, and call zi closed otherwise. Let On

denote the set of open vertices in BZ(Kn), and let Cn denote the largest open clusters of On.

Before proving Lemma 5.3, we provide some preliminary results, see the following Lem-

mas 6.2–6.7. Lemmas 6.2 and 6.4–6.7 are proved under the condition (5), and we will omit it

to avoid repetition.

Lemma 6.2 There exists a constant c = c(ε, α, d) such that

max
1≤i≤Kd

n

|Xn ∩ Si| ≤ cεdnrdn w.h.p.

Proof It can be easily deduced from Lemma 4.1 of [27].

Lemma 6.3 (Lemma 9.9 in [28]) Let β ∈ (0, 1). If A is a subset of BZ(Kn) (not neces-

sarily connected), with |A| ≤ βKd
n, then

|∂A| ≥ (2d)−1(1− β1/d)|A|(d−1)/d
.

Lemma 6.4 Suppose that A ⊂ BZ(Kn) and the integer k ≥ 1. Then for any β ∈ (0, 1),

there exist constants c = c(α, ε, k, β, d) > 0 and γ = γ(α, ε, k, β) such that w.h.p.

inf
γ(log n)d/(d−1)≤|A|≤βKd

n

Ais k-connected

g1(A)

|A| >
cn2r2dn
Kn

.

Proof The lemma can be deduced by the similar method as that of Lemma 5.10 in [27]

with a small modification, and we omit the proof details to save space.



Lemma 6.5 If αεd > (d+ 3)d/2 then w.h.p.

min
1≤i≤Kd

n

|Si ∩ Pη(n)| >
n

Kd
n

H−1
−

(
1

2
+

(d+ 3)d/2

2αεd

)
.

Proof By Lemma 1.2 in [28] we obtain

P




Kd
n⋃

i=1

{
|Pη(n) ∩ Si| ≤

nβ

Kd
n

}


≤Kd
n exp

(
−n− n3/4

⌈
√
d+3
εrn

⌉d
H

(
nβ

n− n3/4

))

<n exp

(
−n− n3/4

⌈
√
d+3
εrn

⌉d

(
1

3
+

2

3αεd(d+ 3)−d/2

))
→ 0 as n → ∞,

which is followed by our result.

Lemma 6.6 Suppose that αεd > (d + 3)d/2 and A ⊂ BZ(Kn). Then for any β ∈ (0, 1),

there exists a constant c = c(α, d, β) > 0 such that w.h.p.

inf
|A|≤βKd

n

g1(A)

|A| > cn2r2d+1
n .

Proof Since |A| ≤ βKd
n, then by Lemma 6.3, we have

|∂A| ≥ (2d)−1(1− β1/d)|A|(d−1)/d ≥ (1− β1/d)|A|
2dβ1/dKn

. (45)

Combining (45) with Lemma 6.5, w.h.p.

inf
|A|≤βKd

n

g1(A)

|A| >
n2

K2d
n

(
H−1

−

(
1

2
+

(d+ 3)d/2

2αεd

))2

inf
|A|≤βK2

n

|∂A|
|A|

≥ n2(1− β1/d)

β1/dK2d+1
n

(
H−1

−

(
1

2
+

(d+ 3)d/2

2αεd

))2

,

which implies our result.

For F ⊆ {1, 2, · · · , n} and F c = {1, 2, · · · , n}\F , set

Φn := inf
|F |≤n

2 ,t>0





1

|F |
∑

i∈F,j∈F c

fn(‖Xi(t)−Xj(t)‖)



 .

We have the following lemma.

Lemma 6.7 Assume that α ∈ (2
d−1

dπd
,∞], and that there exists a constant δ > 0 such

that (25) holds. For any constant ε > 0, there exists a constant c = c(α, ε, d) > 0 such that



(i) if αεd ≤ (d+ 3)d/2, then w.h.p.

Φn ≥ cmin

{
nrd+1

n fn((δ + ε)rn),
fn (Rc + (δ + ε)rn)

(logn)(2d−1)/(d−1)

}
;

(ii) if αεd > (d+ 3)d/2, then w.h.p.

Φn ≥ cnfn((δ + ε)rn)min
{
rd+1
n , 1

}
.

Proof (i) For F ⊆ {1, 2, · · · , n}, define F̃ := {Xi(0) : i ∈ F} ⊆ Xn to be the initial

positions of agents whose indexes are in F . For D1, D2 ⊂ [0, 1]d, set

gD1,D2(F ) = gD1,D2,n(F ) :=
∑

x∈D1∩F̃ ,y∈D2∩F̃ c

fn(‖x− y‖+ δrn).

Take g(F ) = g[0,1]d,[0,1]d(F ), and define

Φ′
n := inf

|F |≤n/2

∑
i∈F,j∈F c fn(‖Xi(0)−Xj(0)‖+ δrn)

|F | = inf
|F |≤n/2

g(F )

|F | .

Now, we estimate Φ′
n. Denote

AF :=

{
zi : |Si ∩ F̃ | > 1

2
|Si ∩ Xn|

}
⊆ BZ(Kn)

and

ÃF :=
⋃

zi∈AF

Si ∩ Xn.

Set β := 1− 1
4c1(d+4)d/2

. If |AF | > βKd
n, then |Ac

F | ≤ (1−β)Kd
n. By Lemma 6.2, we have w.h.p.

∑

zi∈Ac
F

|Si ∩ Xn| ≤ c1ε
d|Ac

F |nrdn <
n

4
,

where c1 is the constant c appearing in Lemma 6.2. If |F | ≤ n/2, then |F̃ c| = |F c| > n
2 .

Thus, there exist at least n
4 vertices in F̃ c contained by ÃF . For x ∈ F̃ c ∩ ÃF , without loss

of generality we assume that x ∈ Si with zi ∈ AF . Then by the definition of AF we can get

|F̃ ∩ Si| ≥ |F̃ c ∩ Si| ≥ 1, which indicates that there exists at least one vertex y such that

y ∈ F̃ ∩ Si. Note that the length of the side of Si is less than εrn/
√
d+ 3. Then w.h.p.

inf
|F |≤n

2 ,|AF |>βKd
n

g(F )

|F | ≥
n
4 fn

(
εrn

√
d√

d+3
+ δrn

)

n/2
≥ fn((ε+ δ)rn)

2
. (46)

In the following we consider the case of |AF | ≤ βKd
n. Let A1, A2, · · · , AmF be components

of AF satisfying: 1) A1, A2, · · · , AmF are all ⌈
√
d+3
ε ⌉-connected; 2) Ai ∪ Aj , 1 ≤ i 6= j ≤ mF is

not ⌈
√
d+3
ε ⌉-connected; 3) |A1| ≥ |A2| ≥ · · · ≥ AmF . Without loss of generality, we assume that



|Ai| ≥ γ(logn)d/(d−1) for 1 ≤ i ≤ iF , and |Ai| < γ(logn)d/(d−1) for iF + 1 ≤ i ≤ mF , where

iF ∈ [1,mF ] and γ is the same constant appearing in Lemma 6.4. By Lemma 6.4, we have

inf
|AF |≤βKd

n,1≤i≤iF

g1(Ai)

|Ai|
≥ c2n

2r2dn
Kn

w.h.p., (47)

where c2 is the constant c appearing in Lemma 6.4.

For i ∈ [1, iF ], it is easy to see that if zk ∈ Ai and zj ∈ Ac
i with zk ∼ zj , then zj ∈ Ac

F , and

the distance of any pair of vertices in Sk ∪ Sj is not greater than εrn. By the definition of AF ,

we have

gSk,Sj(F ) =
∑

x∈Sk∩F̃ ,y∈Sj∩F̃ c

fn(‖x− y‖) ≥ fn((ε+ δ)rn)

4
|Xn ∩ Sk| · |Xn ∩ Sj |.

Therefore, if Pθ(n) ⊆ Xn, then

∑

zk∈Ai,zj∈Ac
F ,zk∼zj

gSk,Sj(F ) =
∑

zk∈Ai,zj∈Ac
i ,zk∼zj

gSk,Sj(F ) ≥ fn((ε+ δ)rn)

4
g1(Ai). (48)

Moreover, by (44), we see that Pθ(n) ⊆ Xn holds w.h.p.

Set

S1
F :=

iF⋃

i=1

⋃

zk∈Ai

Sk.

By (48), we have w.h.p.

gS1
F ,[0,1]d\S1

F
(F ) ≥

iF∑

i=1

∑

zk∈Ai,zj∈Ac
F ,zk∼zj

gSk,Sj(F ) ≥
iF∑

i=1

fn((ε+ δ)rn)

4
g1(Ai). (49)

For i ∈ [iF + 1,mF ], if
⋃

zj∈Ai
Sj ∩ F̃ c 6= ∅, then we have gD′

i,D
′
i
(F ) ≥ fn(εrn) where

D′
i =

⋃
zj∈Ai

Sj ; If
⋃

zj∈Ai
Sj∩F̃ c = ∅, then by Lemma 2.1, we know that w.h.p. G(Xn;Rc+εrn)

is connected. Thus, there exists at least one vertex x∗ ∈ (
⋃

zj∈Ai
Sj)

c ∩ Xn such that the set

{y : y ∈
⋃

zj∈Ai

Sj ∩ F̃ , ‖x∗ − y‖ ≤ Rc + εrn}

is not empty. Assume that x∗ ∈ Sk (1 ≤ k ≤ Kd
n) and zk is the corresponding integer point of

Sk, then zk must be ⌈
√
d+3
ε ⌉-connected with Ai, and zk ∈ Ac

F . Denote D′′
i =

⋃
zj∈Ai

Sj ∪Sk. If

x∗ ∈ F̃ c, then

gD′′
i ,D′′

i
(F ) ≥ fn(Rc + (δ + ε)rn);

Otherwise, by the definition of AF we have Sk ∩ F̃ c 6= ∅, and

gD′′
i ,D′′

i
(F ) ≥ gSk,Sk

(F ) ≥ fn((ε+ δ)rn).



Set

S2
F :=





mF⋃

i=iF+1

D′
i, if

⋃
zj∈Ai

Sj ∩ F̃ c 6= ∅,
mF⋃

i=iF+1

D′′
i , otherwise.

For z ∈ Z
d, it is easy to see that the number of different ⌈

√
d+3
ε ⌉-connected components which

is ⌈
√
d+3
ε ⌉-connected with z is less than ⌈

√
d+3
ε ⌉d. By the above argument we have w.h.p.

gS2
F ,S2

F
(F ) ≥

⌈√
d+ 3

ε

⌉−d

(mF − iF )fn (Rc + (δ + ε)rn) . (50)

Let S3
F = [0, 1]d\(S1

F ∪ S2
F ). For x ∈ S3

F ∩ F̃ , we assume that x ∈ Sk (1 ≤ k ≤ Kd
n), and

denote zk ∈ BZ(Kn) as the corresponding integer point of Sk. It is clear that zk ∈ Ac
F , and the

set Sk ∩ F̃ c is not empty. Thus,

gS3
F ,S3

F
(F ) ≥

∑

x∈S3
F∩F̃

fn((δ + ε)rn) = |S3
F ∩ F̃ |fn((δ + ε)rn). (51)

By the definition of S1
F and S2

F we have Leb(S1
F ∩S2

F ) = 0. By (49), (50) and (51), we have

w.h.p.

g(F ) ≥ gS1
F ,[0,1]d\S1

F
(F ) + gS2

F ,S2
F
(F ) + gS3

F ,S3
F
(F )

≥
iF∑

i=1

fn((ε+ δ)rn)

4
g1(Ai) + |S3

F ∩ F̃ |fn((δ + ε)rn)

+

⌈√
d+ 3

ε

⌉−d

(mF − iF )fn (Rc + (δ + ε)rn) .

By the above inequality, we have w.h.p.

inf
|AF |≤βKd

n

g(F )

|F | = inf
|AF |≤βKd

n

g(F )

|S1
F ∩ F̃ |+ |S2

F ∩ F̃ |+ |S3
F ∩ F̃ |

≥ inf
|AF |≤βKd

n

g(F )

c1εdnrdn

(∑iF
i=1 |Ai|+ (mF − iF )γ(logn)d/(d−1)

)
+ |S3

F ∩ F̃ |

≥ min

{
fn((ε+δ)rn)

4

∑iF
i=1 g1(Ai)

c1εdnrdn
∑iF

i=1 |Ai|
,
⌈
√
d+3
ε ⌉−dfn (Rc + (δ + ε)rn)

c1εdnrdnγ(logn)
d/(d−1)

, fn((δ + ε)rn)

}

≥ min

{
fn((ε+ δ)rn)c2n

2r2dn
4c1εdnrdnKn

,
fn (Rc + (δ + ε)rn)

⌈
√
d+3
ε ⌉dc1εdnrdnγ(logn)d/(d−1)

}
,

where (47) is used in the last inequality. Combining this with (46), we obtain that there exists

a constant c > 0 such that

Φ′
n ≥ cmin

{
nrd+1

n fn((δ + ε)rn),
fn (Rc + (δ + ε)rn)

(logn)(2d−1)/(d−1)

}
w.h.p. (52)



By (25), we have for t > 0,

‖Xi(t)−Xj(t)‖ ≤ ‖Xi(0)−Xj(0)‖ + δrn, w.h.p.

Hence, Φn ≥ Φ′
n holds w.h.p. Combining this with (52) yields our result.

(ii) The definition of c1, β and AF is the same as that in (i). By (46) and Lemma 6.5, we

have

inf
|F |≤n

2 ,|AF |>βKd
n

g(F )

|F | ≥
n
4 · n

2Kd
n
H−1

−

(
1
2 + (d+3)d/2

2αεd

)
fn

(
εrn

√
d√

d+3
+ δrn

)

n/2

≥
nH−1

−

(
1
2 + (d+3)d/2

2αεd

)
fn((ε+ δ)rn)

4Kd
n

w.h.p. (53)

For the case of |AF | ≤ βKd
n, by Lemmas 6.2 and 6.6 we have

inf
|F |≤n

2 ,|AF |≤βKd
n

g(F )

|F | ≥ fn((ε+ δ)rn)

c1εdnrdn
inf

|AF |≤βKd
n

g1(F )

|AF |
≥ c3n

2r2d+1
n

c1εdnrdn
fn((ε+ δ)rn) w.h.p.,

where c3 is the same constant as c appearing in Lemma 6.6. By (53) and the fact Φn ≥ Φ′
n

yields our result.

Proof of Lemma 5.3 Suppose kn,δ ≤ 1− ε. By (25), we have for t > 0,

‖Xi(t)−Xj(t)‖ ≥ ‖Xi(0)−Xj(0)‖ − δrn, w.h.p.

By (23) ∆n(t) ≤ ∆n,δ holds w.h.p. for all t > 0. By Lemma 5.2, we see that w.h.p. ∆n(t) ≤
1− 2ε

3 holds for all t > 0. Thus, given λ ∈ R, if λ < ε
2 − 1, then w.h.p. P (t)− λIn is a strictly

diagonally dominant matrix and det(P (t)− θIn) 6= 0 for all t > 0, which indicates that λ is not

an eigenvalue of P (t). Thus, w.h.p.

λn(t) ≥
ε

2
− 1, ∀ t > 0. (54)

On the other hand, note that P (t) is a symmetric stochastic matrix, then the stationary

distribution of P (t) is ( 1n ,
1
n , · · · , 1

n ). Therefore for t > 0, the Cheeger’ constant of P (t) is not

less than Φn. By the Cheeger’s inequality (Proposition 6 in [33]), we have λ2(t) ≤ 1 − Φ2
n for

t > 0. Combining this with Lemma 6.7 and (54), our results can be deduced.


