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We consider algebraic ordinary differential equations (AODEs) and study
their polynomial and rational solutions. A sufficient condition for an AODE
to have a degree bound for its polynomial solutions is presented. An AODE
satisfying this condition is called noncritical. We prove that usual low order
classes of AODEs are noncritical. For rational solutions, we determine a
class of AODEs, which are called maximally comparable, such that the poles
of their rational solutions are recognizable from their coefficients. This gen-
eralizes a fact from linear AODEs, that the poles of their rational solutions
are the zeros of the corresponding highest coefficient. An algorithm for deter-
mining all rational solutions, if there is any, of certain maximally comparable
AODEs, which covers 78.54% AODEs from a standard differential equations
collection by Kamke, is presented.

1 Introduction

An algebraic ordinary differential equation (AODE) is of the form

F (x, y, y′, . . . , y(n)) = 0,

where F is a polynomial in y, y′, . . . , y(n) with coefficients in K(x), the field of rational
functions over an algebraically closed field K of characteristic zero, and n ∈ N. For
instance, K can be the field of complex numbers, or the field of algebraic numbers.
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Many problems from applications (such as physics, combinatorics and statistics) can be
characterized in terms of AODEs. Therefore, determining (closed form) solutions of an
AODE is one of the central problems in mathematics and computer science.

Although linear ODEs [10] have been intensively studied, there are still many challeng-
ing problems for solving (nonlinear) AODEs. As far as we know, approaches for solving
AODEs are only available for very specific subclasses. For example, Riccati equations,
which have the form y′ = f0(x) + f1(x)y + f2(x)y2 for some f0, f1, f2 ∈ K(x), can be
considered as the simplest form of nonlinear AODEs. In [12], Kovacic gives a complete
algorithm for determining Liouvillian solutions of a Riccati equation with rational func-
tion coefficients. The study of general solutions without movable singularities can be
found in [8, 14, 16] for first-order, and in [4, 10] for higher-order AODEs.

Since the problem of solving an arbitrary AODE is very difficult, it is natural to ask
whether a given AODE admits some special kinds of solutions. We are interested in
polynomials and rational functions. During the last two decades, an algebraic-geometric
approach for finding rational solutions of AODEs has been developed. In [5], Eremenko
gave a theoretical consideration for the existence of a degree bound for rational solutions
of a first-order AODE. In [6, 7], by using a view from algebraic curves, the authors
provided polynomial time algorithms for determining rational (and algebraic) solutions
of an autonomous first-order AODE. The authors of [15, 18, 17] developed the methods
for non-autonomous first-order AODEs.

In this paper, we are interested in polynomial and rational solutions of arbitrary order
AODEs and their properties. We give a sufficient condition for an AODE to have a degree
bound for its polynomial solutions, and in the affirmative case, determine such a bound.
An AODE satisfying this condition is called noncritical. The easy determination of the
condition allows us to confirm that several usual low order AODEs are noncritical (see
Theorem 3.6 and 3.7). This result can be considered as a refinement of the works of
polynomial solutions of Krushel’nitskij in [13], and Cano in [1].

It well-known that every pole of rational solutions of a linear ODE with polynomial
coefficients is a zero point of its highest coefficient. This fact allows us to easily recog-
nize possible poles of a rational solutions from the coefficients of a given linear AODE.
Unfortunately, this fact is no longer true for nonlinear AODEs. However, we show that
there is a big subclass of AODEs in which this fact is still valid. In order to do that,
we equip the set of monomials in the unknown y and its derivatives with a suitable
partial order (see Definition 4.1). If an AODE admits the highest monomial with re-
spect to this ordering, then poles of its rational solutions can only occur at the zeros of
the corresponding highest coefficient (Theorem 4.3). This generalizes the same fact of
linear AODEs to the nonlinear ones. An AODE satisfying the existence of the highest
monomial is called maximally comparable.

The notion of maximally comparable AODEs already appears in [19], where the au-
thors considered first-order AODEs only. The authors proved that for every maximally
comparable first-order AODE, there is a finite upper bound for the degrees of its ra-
tional solutions, together with an algorithm to determine the bound. Here, we extend
the notion to high-order ones. Unlike the first-order cases, there might be no such an
upper bound for the higher order ones. We define a class of AODEs, called completely
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maximally comparable, where the existence of an upper bound for its rational solutions is
always guaranteed. The class of maximally comparable AODEs covers 78.54% AODEs
from a standard collection by Kamke [11]. All of them are complete. This suggests
that completely maximally comparable AODEs, which are in the scope of our algorithm
for determining all rational solutions (see Algorithm 4.7), form a big subclass among
AODEs.

The rest of the paper is organized as follows. Section 2 is devoted for a study of
order bounds for poles of a Laurent series solution of AODEs. In Section 3, we give a
sufficient condition for an AODE to have a degree bound for its polynomial solutions.
We also prove that usual low order AODEs satisfy this condition. Rational solutions
of maximally comparable are considered in Section 4. Finally, we perform a statistical
investigation with a collection of AODEs from a standard text book by Kamke [11].

2 An order bound for Laurent series solutions

This section can be considered as an alternative interpretation of the Newton polygon
method for AODEs, specified for Laurent series solutions. In particular, given an AODE,
we show in Proposition 2.2 that the orders of its Laurent series solutions at any point
can be bounded in an algorithmic way. The proposition yields an easy determination of
the bound. More general constructions which are applicable for wider classes of series
solutions can be found in [1, 3, 9].

Given x0 ∈ K ∪ {∞}, a Laurent series f at x = x0 has the form

∞
∑

k=m

ck(x − x0)k if x0 ∈ K,

∞
∑

k=m

ckx−k if x0 = ∞,

where ck ∈ K, cm 6= 0 and m ∈ Z. We call −m the order of f (at x = x0), and denote
it by ordx0(f). The coefficient cm is called the lowest coefficient of f (at x = x0), and
denoted by cx0(f). Then we can rewrite f as follows:

cx0(f)(x − x0)−ordx0(f) + higher terms in (x − x0) if x0 ∈ K,

c∞(f)xordx0 (f) + lower terms in x if x0 = ∞.

For each I = (i0, i1, . . . , in) ∈ N
n+1 and r ∈ {0, . . . , n}, we set ||I||r = ir + . . . + in.

We simply write ||I||0 by ||I||. Furthermore, the notation ||I||∞ = i1 + 2i2 + . . . + nin

will be also used frequently.
Let F (y) =

∑

I∈Nn+1

fI(x)yi0(y′)i1 · · · (y(n))in ∈ K(x){y} be a differential polynomial of

order n. We will use the following notations:

E(F ) = {I ∈ N
n+1 | fI 6= 0},

d(F ) = max{||I|| | I ∈ E(F )},

D(F ) = {I ∈ E(F ) | ||I|| = d(F )}.
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Moreover, for each x0 ∈ K, we denote

mx0(F ) = max{ordx0 fI + ||I||∞ | I ∈ D(F )},

Mx0(F ) = {I ∈ D(F ) | ordx0 fI + ||I||∞ = mx0(F )},

Px0,F (t) =
∑

I∈Mx0(F )
cx0(fI) ·

n−1
∏

r=0
(−t − r)||I||r+1,

and if E(F ) \ D(F ) 6= ∅, we set

bx0(F ) = max

{

ordx0 fI + ||I||∞ − mx0(F )

d(F ) − ||I||

∣

∣

∣

∣

I ∈ E(F ) \ D(F )

}

.

In case that x0 = ∞, we also denote

m∞(F ) = max{ord∞ fI − ||I||∞ | I ∈ D(F )},

M∞(F ) = {I ∈ D(F ) | ord∞ fI − ||I||∞ = m∞(F )},

P∞,F (t) =
∑

I∈M∞(F )
c∞(fI) ·

n−1
∏

r=0
(t − r)||I||r+1,

and

b∞(F ) = max

{

ord∞ fI − ||I||∞ − m∞(F )

d(F ) − ||I||

∣

∣

∣

∣

I ∈ E(F ) \ D(F )

}

if E(F ) \ D(F ) 6= ∅.

Definition 2.1. Let F (y) ∈ K(x){y} be a differential polynomial of order n. For each
x0 ∈ K ∪ {∞}, we call Px0,F the indicial polynomial of F at x = x0.

Note that the above definition is a generalization of the usual indicial polynomial [2, 10]
of linear ODEs.

Proposition 2.2. Given an AODE F (y) = 0, and x0 ∈ K ∪ {∞}. If r ≥ 1 is the order
of a Laurent series solution of F (y) = 0 at x = x0, then one of the following claims
hold:

(i) E(F ) \ D(F ) 6= ∅, and r ≤ bx0(F );

(ii) r is a positive integer root of Px0,F (t).

Proof. Let F (y) =
∑

I∈Nn+1

fI(x)yi0(y′)i1 . . . (y(n))in ∈ K(x){y} be a differential polynomial

of order n. Let x0 ∈ K and z ∈ K((x − x0)) \K be a Laurent series solution of F (y) = 0
of order r ≥ 1. Then z(k) is of order k + r for each k ∈ N. For each I ∈ E(F ), we may
write the coefficient fI in the following form:

fI =
cx0(fI)

(x − x0)ordx0 fI
+ hI ,

where hI ∈ K((x)) and ordx0 hI < ordx0 fI . Since z is a solution of F (y) = 0, we have
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0 = F (z)
= S1 + S2 + S3 + S4,

where

S1 =
∑

I∈Mx0 (F )

cx0(fI )

(x−x0)ordx0 fI
· zi0(z′)i1 · · · (z(n))in , S2 =

∑

I∈Mx0 (F )
hI · zi0(z′)i1 · · · (z(n))in,

S3 =
∑

I∈D(F )\Mx0 (F )
fIzi0(z′)i1 · · · (z(n))in , S4 =

∑

I∈E(F )\D(F )
fIzi0(z′)i1 · · · (z(n))in.

The order of each term in S1 are equal to D = d(F )r + mx0(F ), which is strictly larger
than that of each term in S2 and S3. One of the two following cases will happen:

Case 1: The order of S1 is equal to D. Then the term of order D in S1 must be killed
by terms of S4. In this case, we have E(F ) \ D(F ) 6= ∅. By comparing with
the orders of terms in S4, we obtain

D ≤ max {||I|| · r + ||I||∞ + ordx0 fI | I ∈ E(F ) \ D(F )} .

On the other hand, since D = d(F )r + mx0(F ), we conclude that

r ≤ max

{

||I||∞ + ordx0 fI − mx0(F )

d(F ) − ||I||

∣

∣

∣

∣

I ∈ E(F ) \ D(F )

}

.

In other words, r ≤ bx0(F ).

Case 2: The order of S1 is strictly smaller than D. For each k ∈ N, a direct computation
implies that the lowest coefficient z(k) at x = x0 is

cx0(z
(k)) = cx0(z)

k
∏

s=1

(−r − s + 1).

Therefore, the lowest coefficient of the term indexed by I ∈ Mx0(F ) in S1 is

cx0(fI) ·
n
∏

k=0

(

cx0(z)
k
∏

s=1

(−r − s + 1)

)ik

= cx0(fI)cx0(y)||I||
n
∏

s=1

(−r − s + 1)||I||s.

Since the orders of terms in S1 are the same and they are strictly larger than
that of S1, the sum of those lowest coefficients must be zero. In other words,
we have

∑

I∈Mx0 (F )

cx0(fI)cx0(y)||I||
n
∏

s=1

(−r − s + 1)||I||s = 0.

The left side of the above equality is exactly cx0(y)d(F ) · Px0,F (r). Hence, r is
a positive integer root of Px0,F (r).

The case that x0 = ∞ can be proved in a similar way.
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For a linear homogeneous ordinary differential equation F (y) = 0, item (i) of the
above theorem will never happen because E(F ) = D(F ).

Consider an AODE F (y) = 0. If E(F ) = D(F ) and the indicial polynomial Px0,F (t)
is zero, then Theorem 2.2 does not give any information for the order bound of Laurent
series solution of F (y) = 0 at x = x0. In the next section, we will give an example
(Example 3.5) that the order can be arbitrarily high in this case.

3 Polynomial solutions of noncritical AODEs

In [13], Krushel’nitskij discusses the properties of the degree of a polynomial solution for
a given AODE. By using the Newton polygon at infinity, Cano proposes an algorithm for
determining a bound for the degrees of polynomial solutions of an AODE provided that
the Newton polygon of the given AODE must satisfies certain additional assumption (see
[1, Section 2.2]). Whenever a degree bound is found, one can determine all polynomial
solutions by undeterminate coefficient method. However, to the best of our knowledge,
no full algorithm for computing all polynomial solutions of AODEs exists so far.

In this section, we use Proposition 2.2 to give a sufficient condition (Definition 3.1) for
the existence of a bound for the degrees of polynomial solutions. We prove that several
usual classes of AODEs satisfy this sufficient condition (Theorem 3.6 and Theorem 3.7).
Furthermore, we will show in Section 5 that all of AODEs in Kamke’s collection [11]
satisfy the sufficient condition.

Definition 3.1. An AODE F (y) = 0 is called noncritical if P∞,F (t) 6= 0.

Corollary 3.2. If an AODE F (y) = 0 is noncritical, then there exists a bound for the
degree of its polynomial solutions.

Proof. Straightforward from Theorem 2.2.

Algorithm 3.3. Given a noncritical AODE F (y) = 0, compute all its polynomial solu-
tions.

(1) Compute P∞,F (t). If P∞,F (t) has integer roots, then set r1 to be the largest integer
root. Otherwise, set r1 = 0.

(2) Compute r2 = ⌊b∞(F )⌋ if E(F ) \ D(F ) 6= ∅. Otherwise set r2 = 0.

(3) Set r = max{r1, r2, 0}. Make an ansatz z =
∑r

i=0 cix
i, where ci’s are unknown.

Substitute z into F (y) = 0 and solve the corresponding algebraic equations by using
Gröbner bases.

(4) Return the solutions from the above step.

The termination of Algorithm 3.3 is obvious. The correctness follows from Theo-
rem 2.2.
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Example 3.4 (Kamke 6.234 [11]). Consider the differential equation:

F (y) = a2y2y′′2 − 2a2yy′2y′′ + a2y′4 − b2y′′2 − y′2 = 0, (1)

where a, b ∈ K and a 6= 0. The following table is a list of the exponents of terms of F

and related information.

I ∈ E(F ) ||I|| ||I||∞ fI

(2, 0, 2) 4 4 a2

(1, 2, 1) 4 4 −2a2

(0, 4, 0) 4 4 a2

(0, 0, 2) 2 4 −b2

(0, 2, 0) 2 2 −1

From the above table we see that D(F ) is the set of exponents in the first three lines,
and E(F ) \ D(F ) is the set of exponents in the last two lines. A direct computation
shows that m∞(F ) = −4, M∞(F ) = D(F ), and P∞,F (t) = a2t2 6= 0. Therefore, the
differential equation (1) is noncritical. Furthermore, we find that b∞(F ) = 1.

By Theorem 2.2, every polynomial solution of (1) has degree at most 1. By making
an ansatz and solving the corresponding algebraic equations, we obtain all polynomial
solutions, which are c, c + x

a
, and c − x

a
, where c is an arbitrary constant in K.

Through our investigation, almost all AODEs we see in the literature are noncritical
(see Section 5). Only few of them are not noncritical. Below is one example for a critical
AODE.

Example 3.5. Consider the following differential equation [9, 5]:

F (y) = xyy′′ − xy′2 + yy′ = 0.

By computation, we find that its indicial polynomial is zero. So, F (y) = 0 is a critical
AODE. Actually, it has polynomial solutions z = cxn for arbitrary c ∈ K and n ∈ N.

We show in the next two theorems that noncritical AODEs cover most of usual low
order AODEs.

Theorem 3.6. Let L ∈ K(x)
[

∂
∂x

]

be a differential operator, and P (x, y, z) ∈ K(x)[y, z]
a polynomial in two variables with coefficients in K(x). Then for each n > 0, the
differential equation L(y) + P (x, y, y(n)) = 0 is noncritical.

In particular, linear AODEs, first-order AODEs (which have the form F (x, y, y′) = 0
for some F ∈ K(x)[y, y′]), and quasi-linear second-order AODEs (which have the form
y′′ + G(x, y, y′) = 0 for some G ∈ K(x)[y, y′]), are noncritical.

Proof. Let F (y) = L(y) + P (x, y, y(n)). We prove that P∞,F is nonzero.
First, we consider the case that P is a linear polynomial in y and z. Then F is a

linear differential polynomial, say

F (y) = fI−1 + fI0y + · · · + fIm
y(m),
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where fIi
∈ K(x) and fIm

6= 0 and m ∈ N. A direct computation shows that the indicial
polynomial of F at infinity is of the form

P∞,F (t) =
∑

i=0,...,m
Ii∈M∞(F )

c∞(fIi
) ·

i
∏

s=1

(t − s + 1),

which is a nonzero polynomial. Therefore, linear AODEs are noncritical.
Next, assume that P is of total degree at least 2. Then we have D(F ) = D(P (x, y, y(n)))

and M∞(F ) = M∞(P (x, y, y(n))). We write P (x, y, y(n)) in the form

P (x, y, y(n)) =
∑

(i,j)∈N2

fi,j(x)yi(y(n))j .

Then M∞(F ) consists of elements of the form ei,j = (i, 0, . . . , 0, j) ∈ N
n+1. A direct

calculation reveals that

P∞,F (t) =
∑

j=1,...,n
ei,j∈M∞(F )

c∞(fi,j) · [t(t − 1) · · · (t − n + 1)]j.

The indicial polynomial P∞,F (t) can be viewed as the evaluation of the nonzero univari-
ate polynomial

g(T ) =
∑

j=1,...,n
ei,j∈M∞(F )

c∞(fi,j) · T j at T = t(t − 1) · · · (t − n + 1).

On the other hand, since t(t − 1) · · · (t − n + 1) is transcendental over K, we conclude
that P∞,F 6= 0.

Theorem 3.7. Let L ∈ K(x)
[

∂
∂x

]

be a differential operator with coefficients in K(x),
and Q(y, z, w) ∈ K[y, z, w] a polynomial in three variables with coefficients in K. Then
for each m, n > 0, the differential equation L(y) + Q(y, y(n), y(m)) = 0 is noncritical.

In particular, autonomous second-order AODEs (which have the form F (y, y′, y′′) = 0
for some F ∈ K[y, y′, y′′]), and quasi-linear autonomous third-order AODEs (which have
the form y′′′ + G(y, y′, y′′) = 0 for some G ∈ K[y, y′, y′′]), are noncritical.

Proof. Let F (y) = L(y) + Q(y, y(m), y(n)). Without loss of generality, we can assume
that 0 < m < n. As we have seen from the previous proposition, a linear AODE is
noncritical. Therefore we can assume further that Q is of total degree at least 2. Then
we have D(F ) = D(Q(y, y(m), y(n))) and M∞(F ) = M∞(Q(y, y(m), y(n))). Let us write
Q(y, y(m), y(n)) in the form

Q(y, y(m), y(n)) =
∑

(ijk)∈N3

fijkyi(y(m))j(y(n))k.
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For simplicity, we denote eijk = (i, 0, . . . , 0, j, 0, . . . , 0, k) ∈ N
n+1, where j is the (m + 1)-

th coordinate. Then M∞(F ) consists of all eijk such that i+j+k = d(F ) and mj+nk =
m∞(F ). A direct computation implies that

P∞,F (t) =
∑

(i,j,k)∈N3

eijk∈M∞(F )

c∞(fijk) · (t(t − 1) · · · (t − m + 1))j+k · ((t − m) · · · (t − n + 1))k
.

This polynomial can be rewritten as:

P∞,F (t) = A
m∞(F )

m ·
∑

k=0,...,n
eijk∈M∞(F )

c∞(fijk)

(

B

A
(n−m)

m

)k

, (2)

where A = t(t − 1) · · · (t − m + 1) and B = (t − m) · · · (t − n + 1). The sum in (2) can
be viewed as the evaluation of the univariate polynomial

h(T ) =
∑

k=0,...,n
eijk∈M∞(F )

c∞(fijk)T k at T =
B

A
(n−m)

m

.

Since the projection which maps eijk to k is injective, we have that h(T ) is nonzero.
On the other hand, since B

A
(n−m)

m

is transcendental over K, we conclude that P∞,F is

nonzero.

4 Rational solutions of maximally comparable AODEs

It is well-known that poles of rational solutions of a linear ODE with polynomial co-
efficients only occur at the zeros of the highest coefficient of the equation (see [10]).
This fact is no longer correct when we consider nonlinear AODEs in general. In this
section, we describe a class of AODEs in which the above fact is still true. In order to
do that, we first need to define what is the "highest" coefficient in the nonlinear case.
To do so, we equip the set of monomials in y and its derivatives with a suitable partial
order (Definition 4.1). We show in Theorem 4.3 that if the given AODE has the greatest
monomial with respect to this ordering, then the poles of its rational solutions can only
occur at the zeros of the corresponding coefficient. Together with Proposition 2.2, we
give a sufficient condition for such AODEs to have bounds for the orders of their poles,
therefore one can determine their rational solutions if there is any.

Definition 4.1. Assume that n ∈ N. For each I, J ∈ N
n+1, we say that I ≫ J if

||I|| ≥ ||J || and ||I|| + ||I||∞ > ||J || + ||J ||∞.

It is straightforward to verify that the order defined as above is a strict partial ordering
on N

n+1, i. e. the following properties hold for all I, J, K ∈ N
n+1:

(i) irreflexivity: I 6≫ I;
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(ii) transitivity: if I ≫ J and J ≫ K, then I ≫ K;

(iii) asymmetry: if I ≫ J , then J 6≫ I.

For I, J ∈ N
n+1, we say that I and J are comparable if either I ≫ J or J ≫ I.

Otherwise, they are called incomparable. It is clear that the order ≫ is not a total order
on N

n+1. For example, (2, 0) and (0, 1) are incomparable. For a given point I in N
n+1,

it is straightforward to verify that the number of points that are incomparable to I is
finite.

Let S be a subset of Nn+1. An element I ∈ S is called the greatest element of S if
I ≫ J for every J ∈ S \ {I}. By the asymmetry property of ≫, the set S has at most
one greatest element. This motivates the following definition.

Definition 4.2. An AODE F (y) = 0 is called maximally comparable if E(F ) admits a
greatest element with respect to ≫. In this case, the corresponding monomial is called
the highest monomial, and the coefficient of the highest monomial is called the highest
coefficient.

The term maximally comparable already appeared in [19]. In [19, Section 3], the
authors defined maximally comparable first-order AODEs and studied their rational
solutions. The authors also showed that most of first-order AODEs are maximally com-
parable. Here, we extend the authors’ work to the class of higher-order AODEs. We
will see later that a big part of high-order AODEs in literature are also maximally com-
parable. The following theorem can be viewed as a generalization of [19, Theorem 3.4].

Theorem 4.3. Let F (y) =
∑

I∈Nn+1

fIyi0(y′)i1 . . . (y(n))in ∈ K[x]{y} be a differential poly-

nomial of order n > 0. Assume that F (y) = 0 is maximally comparable, and I0 is the
greatest element of E(F ) with respect to ≫. Then the poles of a rational solution of
F (y) = 0 can only occur at infinity or at the zeros of fI0(x).

Proof. We prove the above claim by contradiction. Suppose that there is x0 ∈ K such
that x0 is a pole of order r ≥ 1 of a rational solution of the AODE F (y) = 0, and
fI0(x0) 6= 0. Then ordx0 fI0 = 0.

We first prove that Mx0(F ) = {I0}. Since I0 is the greatest element of E(F ) with
respect to ≫, we see that ||I0|| ≥ ||J || for all J ∈ E(F ). So I0 ∈ D(F ). Now let us fix
any J ∈ D(F ) \ {I0}. Since ||I0|| = ||J || and ||I0|| + ||I||∞ > ||J || + ||J ||∞, we have that
||I0||∞ > ||J ||∞. Therefore, we conclude that ordx0(fI0) + ||I0||∞ > ordx0(fJ) + ||J ||∞
because ordx0 fI0 = 0 ≥ ordx0(fJ). In other words, I0 is the only element of Mx0(F ).

Since Mx0(F ) = {I0}, the indicial polynomial at x = x0 has the form

Px0,F (t) = cx0(fI0) ·
n−1
∏

r=0

(−t − r)||I0||r+1.

10



It is straightforward to see that Px0,F (t) has no positive integer root. Due to Proposi-
tion 2.2 and r ≥ 1, we have E(F ) \ D(F ) 6= ∅ and

r ≤ bx0(F ) = max

{

ordx0(fJ) + ||J ||∞ − ||I0||∞
||I0|| − ||J ||

∣

∣

∣

∣

J ∈ E(F ) \ D(F )

}

= max

{

1 −
− ordx0(fJ) + (||I0|| + ||I0||∞) − (||J || + ||J ||∞)

||I0|| − ||J ||

∣

∣

∣

∣

J ∈ E(F ) \ D(F )

}

< 1.

This contradicts the assumption that r ≥ 1.

The above theorem implies that for maximally comparable AODEs, there are only
finitely many candidates for poles of rational function solutions. Moreover, the poles
of rational functions, if there is any, occur only at the zeros of the highest coefficient
with respect to the order ≫ or at infinity. This can be considered as a generalization
to nonlinear AODEs of the same fact for linear ordinary differential equations. Once a
candidate for poles of a rational solution is found, one may use Proposition 2.2 to bound
the order at this candidate. As we mentioned it (Example 3.5) before, Proposition 2.2
may fail to give the order bound at certain points, as the following example illustrates.

Example 4.4. Consider the following AODE:

F (y) = x3yy′′′ + xyy′ − x(y′)2 + yy′ = 0.

It is straightforward to verify that F (y) = 0 is maximally comparable. By Theorem 4.3,
we know that the poles of rational solutions of F (y) = 0 can only be 0. However, a direct
calculation implies that P0,F (t) = 0. Therefore, we can not give the order bound at zero
by using Proposition 2.2.

In order to compute rational solutions of a given maximally comparable AODEs, we
impose the following property to it so that we bound the order of candidates for poles
of its rational solutions.

Definition 4.5. Let F (y) = 0 be a maximally comparable AODE with the highest coeffi-
cient f(x) with respect to ≫. We say that F (y) = 0 is completely maximally comparable
if Px0,F (t) is a non-zero polynomial for every root x0 of f(x).

The following is a sufficient condition for a maximally comparable AODE to be com-
plete.

Proposition 4.6. Let F (y) = 0 be a maximally comparable AODE. If D(F ) is a totally
ordered set with respect to the ordering ≫, then for each x0 ∈ K ∪ {∞}, we have
that Px0,F (t) 6= 0.

Proof. Assume that x0 ∈ K∪ {∞}. Since F (y) = 0 is a completely maximally compara-
ble AODE, then for each I, J ∈ Mx0(F ) with I 6= J , we have that ||I||∞ 6= ||J ||∞. On

the other hand, for each I ∈ Mx0(F ), the degree of the polynomial
n−1
∏

r=0
(−t − r)||I||r+1 is

exactly ||I||∞. Above all, we conclude that Px0,F (t) 6= 0.
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We can always give an order bound for candidates of rational solutions of completely
maximally comparable AODEs by using Proposition 2.2. Combined with the partial
fraction decomposition of a rational function, we present the following algorithm for
determining all rational solutions of a completely maximally comparable AODE.

Algorithm 4.7. Given a completely maximally comparable AODE F (y) = 0, compute
all its rational function solutions.

(1) Compute the greatest element I0 of E(F ) with respect to ≫. Compute distinct roots
x1, . . . , xm of fI0(x) in K.

(2) For i ∈ {1, . . . , m}, compute an order bound ri for rational solutions of F (y) = 0
at x = xi by Proposition 2.2. Similarly, compute the order bound N for rational
solutions of the equation at infinity.

(3) Make an ansatz with the partial fraction decomposition

z =
m
∑

i=1

ri
∑

j=1

cij

(x − xi)j
+

N
∑

k=0

cix
i , (3)

where the cij and ci are unknown. Substitute (3) into F (y) = 0 and solve the
corresponding algebraic equations by using Gröbner bases.

(4) Return the solutions from the above step.

The termination of the above algorithm follows from Proposition 2.2. The correctness
follows from Theorem 4.3.

Example 4.8. Consider the differential equation

F (y) = x2(x − 1)2y′′2 + 4x2(x − 1)y′y′′ − 4x(x − 1)yy′′+
4x2y′2 − 8xyy′ + 4y2 − 2(x − 1)y′′

= 0.

We first collect some information about the exponents of terms of F (y).

I ∈ E(F ) ||I|| ||I||∞ ||I|| + ||I||∞ fI

(0, 0, 2) 2 4 6 x2(x − 1)2

(0, 1, 1) 2 3 5 4x2(x − 1)
(1, 0, 1) 2 2 4 −4x(x − 1)
(0, 2, 0) 2 2 4 4x2

(1, 1, 0) 2 1 3 −8x

(2, 0, 0) 2 0 2 4
(0, 1, 0) 1 1 2 −2(x − 1)
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In the above table, D(F ) consists of the first 6 elements of E(F ), and d(F ) = 2. The
first one (0, 0, 2) is the greatest element of E(F ) with respect to ≫.

By Theorem 4.3, the poles of a rational solution of F (y) = 0 can only occur at the
zeros of the polynomial x2(x − 1)2, which are 0 and 1, and probably at infinity.

A simple computation based on Proposition 2.2 shows that the orders of poles of a
rational solution of F (y) = 0 at 0, 1, and infinity are at most 0, 1, and 1, respectively.

Hence, we make an ansatz of the form:

z =
c1

x − 1
+ c2 + c3x for some c1, c2, c3 ∈ K.

Substituting z into F (y) = 0 and solving the corresponding algebraic equations, we find
that the rational solutions of F (y) = 0 are c3x and 1

x−1
+ c3x, where c3 is an arbitrary

constant in K.

5 Experimental results

Some new classes of AODEs have been introduced through previous sections based on
properties of their polynomial and rational solutions. They are: noncritical, maximally
comparable and completely maximally comparable AODEs. In this section, we do some
statistical investigation for noncriticality and the (completely) maximal comparability
of AODEs from the famous collection of differential equations by Kamke [11]. The
corresponding Maple worksheet is available in:

https://yzhang1616.github.io/KamkeODEs.mw

The worksheet requires the availability of the following Maple package:

https://yzhang1616.github.io/KamkeODEs.mpl

There are 834 AODEs in Kamke’s collection. All of them are noncritical. It means
that our method can be used to determine all polynomial solutions, if there is any, of
each AODE from Kamke’s collection. Among them, there are 655 maximally comparable
AODEs (≈ 78.54 %). All of the maximally comparable AODEs are complete.

The class of AODEs covers around 79.66 % of the entire collection of ODEs. The
remaining ODEs have coefficients involving trigonometric functions (sin x, cos x,...), hy-
perbolic functions (sinh x, cosh x, ...), exponential functions ex, logarithmic functions
log x, or power functions with parameters in the exponents (xα, yβ, ...). For certain
choices of the parameters, the latter ODEs will become algebraic. More precisely, there
are 35 ODEs containing parameters in the power functions. If the parameters are chosen
in a suitable way such that the corresponding ODEs are algebraic, then all of them are
noncritical and 21 among them (60 %) are completely maximally comparable.
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