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Abstract: Based on basis path set, G-SGD algorithm significantly outperforms conventional 

SGD algorithm in optimizing ReLU neural networks. However, how the inner mechanism of 

basis paths work remains mysterious. From the aspect of graph theory, this paper defines 

basis path, investigates structure properties of basis paths in regular fully connected neural 

network and interprets the graph representation of basis path set. Moreover, we propose 

hierarchical algorithm HBPS to find basis path set 𝐵 in fully connected neural network by 

decomposing the network into several independent and parallel substructures. Algorithm 

HBPS demands that there doesn’t exist shared edges between any two independent 

substructure paths.  
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1 Introduction 
 

Recently there has been a surge of interest in high interpretability in both theory and practice 

of neural networks, and more and more researchers tend to develop models with interpretable 

knowledge representations [1,2,3]. Conventional stochastic gradient descent (SGD) algorithm 

trains neural networks in the vector space of weights [4], which leads to mismatch during 

optimizing ReLU neural networks in positively scale-invariant space [5]. [6] proposed the 

basis path norm in G-space. To handle this mismatch, Meng et al. [7] proposed to find basis 

path set defined in G-space and optimize the value of basis paths of neural networks by 

stochastic gradient descent algorithm. So the G-space has lower dimension under the positive 

scaling group and the experiments turn out that G-SGD significantly outperforms 

conventional SGD algorithm in optimizing ReLU networks.  

 

In spite of good performance, the basis path set strategy remains mysterious in the training of 

neural networks of ReLU, like what was mentioned in most recent neural network 

interpretation in [1,8,9]. Except the final network output and proof of G-space in ReLU 

network, it is difficult for people to understand how the inner mechanism of basis paths works. 

How does basis path set help achieve superior performance in the training of ReLU networks. 

What kind of properties does the basis path set have? How does the basis path set work in 

regular neural network? To the end of fully understanding how the basis paths work, basis 

path is defined in regular fully connected neural network, attractive structure properties of 

basis paths are investigated and the graph representation of basis path set is interpreted in this 

paper. All research in the paper is undertaken in the aspect of graph theory. Moreover, we 

propose the hierarchical idea to decompose the structures of neural networks. Hierarchical 

idea occasionally appears in the algorithm designing in combinatorial optimization 

[10,11,12,13]. Hierarchical optimization usually decomposes optimization problem into two 

or more sub-problems, which has its own subjective and constrains [10,11]. Our paper 

decomposes the fully connected neural network structure into several simple, independent and 

parallel substructures and finds basis path set for each independent substructure. This 

hierarchical algorithm doesn’t levy any constraints about how the edges skip over layers, but 

requires no shared edges between any two independent substructure paths in the target neural 

network.   

 

The contributions of this paper are summarized as follows. 1) Basis path in neural network is 

defined from the aspect of graph theory. 2) Interpretation of basis path set in neural networks 

displays elegant graphic structure property. 3) Hierarchical idea finds basis path set for fully 

connected neural network. The top level of the hierarchical algorithm is to find the maximal 

independent substructures of a given neural network, which can offer one novel way to 



explore the structure of fully connected neural network. The lower level of the algorithm is to 

find basis paths for each independent substructure. The investigation in this paper can help us 

in training neural networks and can help to explore how neural network works with basis 

paths.   
 

2 Basic Knowledge 

   2.1 Basic definitions and basic operations on the neural network graph  

Fully connected neural network is a 𝐿-layer multi-layer perceptron with weighted edges that 

can skip over different layers, shown as Fig 1. We denote 𝑖-th node in 𝑙-th layer as 𝑂𝑖
𝑙 and 

the node set of the 𝑙-th layer as 𝑂𝑙. We use (𝑂𝑖
𝑙 , 𝑂

𝑖′
𝑙+𝑗

) to denote the directed edge between 

layer 𝑙 and layer 𝑙 + 𝑗, where 1 ≤ 𝑗 ≤ 𝐿 − 𝑙, 1≤ 𝑖 ≤ |𝑂𝑙| and 1 ≤ 𝑖′ ≤ |𝑂𝑙+𝑗|. This paper 

would interpret neural network from the angle of graph theory. Neural network is described as 

a triple graph 𝐺 = (𝑉, 𝐸, 𝑤), where the finite node set 𝑉 = 𝑂0 ∪ … ∪ 𝑂𝑙 … ∪ 𝑂𝐿comprising 

nodes from all layers in neural network 𝐺and finite edge set 𝐸={(𝑂𝑖
𝑙 , 𝑂

𝑖′
𝑙+𝑗

)| 0 ≤ 𝑙 ≤ 𝐿 − 1 

and 1 ≤ 𝑗 ≤ 𝐿 − 𝑙} consisting of all directed fully connected edges between different layers. 

𝑤(𝑂𝑖
𝑙 , 𝑂

𝑖′
𝑙+𝑗

) is the weight of edge (𝑂𝑖
𝑙 , 𝑂

𝑖′
𝑙+𝑗

)  ∈ 𝐸, and 𝑚 = |𝐸| is the number of edges in 

graph 𝐺. Neural network is represented as a directed acyclic graph 𝐺.  

 

Definition 1 (path) [14] A walk in graph 𝐺 is an alternating sequence 𝑊 = 𝑣1𝑒1𝑣2𝑒2𝑣3 

… 𝑣𝑘−1𝑒𝑘−1𝑣𝑘 of nodes 𝑣𝑖 and edges 𝑒𝑗 from 𝐺 such that the tail of 𝑒𝑗 is 𝑣𝑗 and the 

head of  𝑒𝑗 is 𝑣𝑗+1 for every 𝑗 ∈ {1, … , 𝑘 − 1}. If the nodes of 𝑊 are distinct, 𝑊 is a 

path.  

Definition 2 (𝑟-layer-skip edge) If the edge connects the node from the 𝑙-th layer to the node 

of the 𝑙 + (𝑟 + 1)-th layer and skips over 𝑟 layers, we denote this edge as 𝑟-layer-skip edge, 

where 𝑟=0,1, … , 𝐿 − 𝑙 −1.  

 

As shown in Fig. 1, 0-layer-skip edge without any layer skipping is solid and the edge 

skipping over at least one layer such as 1-layer-skip edge is dashed. Some basic operations on 

the edge are defined in graph 𝐺, such as edge removal, edge addition and edge swap 

[14,15,16]. If edge 𝑒 ∈ 𝐸(𝐺), the removal of the edge is defined as 𝐺 − 𝑒: = (𝑉(𝐺), 𝐸(𝐺)\
{𝑒}).The addition of a new edge is define as 𝐺 + 𝑒: = (𝑉(𝐺), 𝐸(𝐺) ∪ {𝑒})[14,15,16]. When 

we remove one edge 𝑒 from graph 𝐺 and add a new edge 𝑒′ to graph 𝐺, we call this 

procedure 𝐺 − 𝑒+𝑒′ as an edge swapping. In order to investigate the properties of paths in 

neural networks, the path operations are specifically defined as follows. 

 

Definition 3 (path addition to a graph) Given a graph 𝐻 and a path 𝑝, we denote the path 

addition by 𝐻 + 𝑝 with 𝑉(𝐻 + 𝑝) = 𝑉(𝐻) ∪ 𝑉(𝑝) and 𝐸(𝐻 + 𝑝) being the disjoint union 

of 𝐸(𝐻) and 𝐸(𝑝) (Parallel edges [15,16] may arise). 

Definition 4 (path removal from a graph) Given a graph 𝐻 and one path 𝑝 with 𝐸(𝑝) ⊆
𝐸(𝐻), the removal of the path 𝑝 from the graph 𝐻 is defined as 𝐻 − 𝑝 with 𝐸(𝐻 − 𝑝) =
𝐸(𝐻) ∖ 𝐸(𝑝)  and 𝑉(𝐻 − 𝑝) = 𝑉(𝐻) ∖ {𝑣 ∈ 𝑉(𝐻)|𝑣 is an isolated vertex after 𝐸(𝐻) ∖
𝐸(𝑝)}. (Note that graph 𝐻 can be a multi-graph [15,16] with parallel edges) 

Definition 5 (addition of two paths) The addition of two paths is defined as 𝑝1 + 𝑝2 with 

𝑉(𝑝1 + 𝑝2) = 𝑉(𝑝1) ∪ 𝑉(𝑝2)  and 𝐸(𝑝1 + 𝑝2)  being the disjoint union of 𝐸(𝑝1)  and 

𝐸(𝑝2) (Parallel edges may arise and usually path operation 𝑝1 + 𝑝2 doesn’t form a new 

path). 

 

2.2 Independent path set  

Fully connected neural network 𝐺 has some special graph structure, which can be seen as the 

space of paths starting from the input layer and ending at the output layer. Graphs are a 

fundamental combinatorial structure [16] and there must be some unique structure properties 

to explore in neural network 𝐺 from the angle of graph theory. 



 

For the simplicity, the symbol 𝑂𝑖∗
𝑙  is denoted for some node without specified position in the 

𝑙-th layer in the following section. Let 𝑝 = (𝑂𝑖∗
0 , 𝑂𝑖∗

1′
, … , 𝑂𝑖∗

𝑗′

… , 𝑂𝑖∗
𝐿 ) be the path starting from 

the input layer 𝑂0  to the output 𝑂𝐿  passing through from several hidden nodes 𝑂𝑖∗
1′

, 

𝑂𝑖∗
2′

,…, 𝑂𝑖∗
𝑗′

, where 0 < 1′ < 2′…< 𝑗′ < 𝐿. Note that path 𝑝 can jump or skip over several 

hidden layers and the number of skipped layers may be not uniform. Let 

𝑃 ={(𝑂𝑖∗
0 , 𝑂𝑖∗

1′
, … , 𝑂𝑖∗

𝑗′

… , 𝑂𝑖∗
𝐿 ) |0 < 1′ < 2′…< 𝑗′ < 𝐿} be the path set consisting of all paths 

from the input layer to the output layer in network 𝐺. Thus the cardinality of set 𝑃 is rather 

huge [7]. We hope to find some subset 𝐵 ⊆ 𝑃, from which we can reach any path 𝑝 ∈ 𝑃 

through multiple path operations within path subset 𝐵 like linearly independent basis vectors. 

So cardinality of subset 𝐵 is substantially far smaller than 𝑃[7]. This paper defines the 

independent path and basis path set in the aspect of graph theory. 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Neural network with layer skipping               Fig. 2 Example of independent paths 

 

Definition 6 (independent path set) Given path set 𝐵, if there exists one path 𝑝 ∈ 𝐵 and 

another path 𝑞 ∈ 𝐵 ∖ {𝑝} such that we can reach path 𝑝 from path 𝑞 through finite steps of 

path addition and path removal within the path set 𝐵, we call path set 𝐵 is dependent. 

Otherwise, we call path set 𝐵 is independent. 

 

In other words, if path set 𝐵 is an independent path set, for any path 𝑝 ∈ 𝐵, we couldn’t 

reach path 𝑝 through operations of addition and removal on any combination of paths in 𝐵 ∖
{𝑝} . If path set 𝐵  is a dependent path set, there exists one path 𝑝 and path subset 

{𝑞1, … , 𝑞𝑠}⊆ 𝐵 ∖ {𝑝}  such that we can get path 𝑝 through finite times of path operations 

on path set {𝑞1, … , 𝑞𝑠}. We say the path 𝑝 ∈ 𝐵 can be represented by the path set 𝐵 ∖ {𝑝} .  

 

In Fig. 2, path 𝑝1 = (𝑂1
0

, 𝑂1
1

, 𝑂1
2

) , path 𝑝2 = (𝑂2
0, 𝑂1

1, 𝑂2
2), 𝑝3 = (𝑂1

0, 𝑂1
1, 𝑂2

2), and 𝑝4 =

(𝑂2
0, 𝑂1

1, 𝑂1
2). Let path set 𝐵 = {𝑝1, 𝑝2, 𝑝3}, where subset {𝑝1, 𝑝2} covers all edges in 𝐵. 

Because neither path 𝑝2 nor path 𝑝3 contains edge (𝑂1
1, 𝑂1

2), so we couldn’t reach path 𝑝1 

from path operations in set 𝐵 ∖ {𝑝1}. And so on, we couldn’t get the path 𝑝2 from {𝑝1, 𝑝3} 

and path 𝑝3 from {𝑝1, 𝑝2}. Hence, path set 𝐵 is an independent set. However, if let path set 

𝐵 = {𝑝1, 𝑝2, 𝑝3, 𝑝4}, 𝑆 is an dependent path set for 𝑝4=𝑝1 + 𝑝2 − 𝑝3. According to Def. 

3,4,5, 𝐸(𝑝1 + 𝑝2 − 𝑝3) =  {(𝑂1
0, 𝑂1

1), (𝑂1
1, 𝑂1

2), (𝑂2
0, 𝑂1

1), (𝑂1
1, 𝑂2

2)}  ∖ {(𝑂1
0, 𝑂1

1), (𝑂1
1, 𝑂2

2)}                  

 =  {(𝑂2
0, 𝑂1

1), (𝑂1
1, 𝑂1

2)} = 𝐸(𝑝4). 
 

   2.3 Basis path set--- maximal independent path set  

Definition 7 (maximal independent path set) A path set 𝐵 of neural network graph 𝐺 is 

maximally independent, if including any other path 𝑝∗ ∈ 𝑃 would make 𝐵 ∪ 𝑝∗ dependent.  

 

Definition 8 (basis path set) Given the path set 𝑃 of neural network 𝐺, the path subset 𝐵 ⊆
𝑃 is said to be the basis path set if path set B is independent and every path 𝑝 ∈ 𝑃 starting 

from the input layer to output layer can be represented by path set 𝐵 by the finite path 

operations. Path 𝑝 ∈ 𝐵 is called basis path. 

Input 

𝑂2
0 𝑂1

0 

𝑂1
1 

 

Output 𝑂2
2 

 

𝑂1
2 



 

Hence, for the maximal independent path set 𝐵, any path 𝑝 ∈ 𝑃 of neural network 𝐺 can 

be reached as a combination of elements of 𝐵 by the finite number of path operations. A 

basis path set 𝐵 of neural network 𝐺 is a maximal independent subset of 𝑃. In other words, 

a superset of a basis path set is dependent. A maximal independent subset of path set 𝑃 of 

neural network 𝐺 is a basis path set.  

 

3 Basis Path Representation of Neural Network 
In this section we will study from the perspective of graph theory about how we represent any 

path 𝑝 ∈ 𝑃 in neural network 𝐺 within basis path set 𝐵 through finite path operations and 

about how we find the basis path set 𝐵 in the fully connected network graph 𝐺 without any 

edge-skipping. Later the weights on the paths in ReLU network [7] can be easily manipulated 

through the path operations within the basis path set. In order to represent neural network 

through basis path set 𝐵, the investigations on the properties of basis path set 𝐵 in graph 𝐺 

should be undertaken first.    

 

Lemma 1 The basis path set 𝐵 must cover all edges of the neural network graph 𝐺. 

Proof: Assume edge 𝑒 is not covered by the basis path set 𝐵. We can find one path 𝑝 =

(𝑂𝑖∗
0 , … , 𝑂𝑖∗

𝐿 ) from the input layer to the output layer passing through edge 𝑒. Then there is 

no way for us to reach path 𝑝 by the operations of adding and removing paths within 𝐵, 

because no path in 𝐵 contains edge 𝑒. 

 

Based on Lemma 1, Lemma 2 considers the basis path set 𝐵 of the unbalanced network 𝐺 

without edge skipping. Here unbalanced network 𝐺 is defined as a network such that the 

number of nodes in each layer is not necessary to be the same. This lemma will tell us how to 

construct the independent path set 𝐵 in a recursive way. After independent path set is proved, 

we will discuss that we can reach any path 𝑝 ∈ 𝑃/𝐵 by starting from 𝑝0 ∈ 𝐵 and taking 

path operations within independent path set 𝐵. Hence path set 𝐵 is a maximal independent 

path set. During the process of recursive construction of basis paths and of proof of maximal 

independent path set, the attractive structure properties are explored. These properties are the 

combinatorial structures companied by the characteristics of independent paths and structures 

of paths in neural networks.  

     

Lemma 2 For the fully connected and unbalanced graph 𝐺 of neural network without any 

edge skipping over layers, the cardinality of the basis path set 𝐵 is 𝑚 − 𝐻，where 𝑚 is the 

number of the edges in graph 𝐺 and 𝐻 is the number of the hidden nodes in graph 𝐺.  

Proof: For the unbalanced graph 𝐺, we can follow the idea that first constructs the direct 

paths and then constructs the cross paths recursively in sub-graph 𝐺(𝑘). Here sub-graph 

𝐺(𝑘) = (𝑂𝑘 ∪ 𝑂𝑘+1, 𝐸𝑘), where 𝐸𝑘 = {𝑒 ∈ 𝐺|𝑒 leaves from 𝑘-th layer and enters 𝑘 + 1-th 

layer } and 0 ≤ 𝑘 ≤ 𝐿 − 1. 

 

First, let 𝑘 = 0 and construct direct paths and cross paths in the sub-graph 𝐺(0) with the 

beginning two layers 𝑂0 and 𝑂1. If |𝑂0| ≥ |𝑂1|, find |𝑂1| direct vertex disjoint paths by 

depth-first searching and let the direct path set be 𝑃𝑑𝑖𝑟
(0)

. Pick up one node 𝑂𝑖′
1 ∈ 𝑂1 randomly 

and set 𝑃𝑑𝑖𝑟
(0)

= 𝑃𝑑𝑖𝑟
(0)

∪{(𝑣, 𝑂𝑖′
1 )| 𝑣 ∈ 𝑂0 ∖ 𝑉(𝑃𝑑𝑖𝑟

(0)
)}. If |𝑂0| < |𝑂1|, find |𝑂0| direct vertex 

disjoint paths by depth-first searching and let the direct path set be 𝑃𝑑𝑖𝑟
(0)

. Let cross path set 

𝑃𝑐𝑟𝑜𝑠𝑠
(0)

={𝑒|𝑒 ∈ 𝐸0 ∖ 𝐸(𝑃𝑑𝑖𝑟
(0)

)}, where 𝐸0 = {𝑒 ∈ 𝐺|𝑒 leaves from 0-th layer and enters 1-th 

layer}. So we can see |𝑃𝑑𝑖𝑟(𝑂𝑖
0)| = 1 for 𝑖 = 1,2, . . , |𝑂0|, i.e., only one direct path can pass 

through each node 𝑂𝑖
0 at the 0-th layer. For each node 𝑂𝑖

0 ∈ 𝑂0, classify the direct path and 

cross paths starting from it, and let the path set 𝑃𝑑𝑖𝑟(𝑂𝑖
0)= { 𝑝 ∈ 𝑃𝑑𝑖𝑟

(0)
|the tail of 𝑝 is node 

𝑂𝑖
0} and let the path set 𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖

0)= {𝑝 ∈ 𝑃𝑐𝑟𝑜𝑠𝑠
(0)

|the tail of 𝑝 is node 𝑂𝑖
0}. For each node 



𝑂𝑖
1 ∈ 𝑂1, let path set 𝑃(𝑂𝑖

1) be the path set consisting of both direct paths and cross paths 

passing through it in 𝐺(0). Secondly, construct the direct path set 𝑃𝑑𝑖𝑟
(1)

 and cross path set 

𝑃𝑐𝑟𝑜𝑠𝑠
(1)

 in sub-graph 𝐺(1) with the 1-th and 2-th layers as described for 𝐺(0). In 𝐺(1), get 

path set 𝑃𝑑𝑖𝑟(𝑂𝑖
1) and 𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖

1) for each node 𝑂𝑖
1 ∈ 𝑂1. Concatenate the direct path from 

𝑃𝑑𝑖𝑟(𝑂𝑖
1) with the paths passing each node 𝑂𝑖

1  from the lower layer. Path set 𝑃(𝑂𝑖
1) 

includes all paths reaching node 𝑂𝑖
1 from the lower layer. For the only direct path 𝑝1 ∈

𝑃𝑑𝑖𝑟(𝑂𝑖
1) and all 𝑝0 ∈ 𝑃(𝑂𝑖

1), do path concatenation as 𝑝0 + 𝑝1, which forms a new path. 

Hence for each node 𝑂𝑖
1, the only direct path 𝑝1 ∈ 𝑃𝑑𝑖𝑟(𝑂𝑖

1) is extended to | 𝑃(𝑂𝑖
1)| direct 

paths. Update direct path set 𝑃𝑑𝑖𝑟
(1)

. In sub-graph 𝐺(1), 𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖
1) includes all cross paths 

starting from 𝑂𝑖1

1 . Pick up one path 𝑝∗ ∈ 𝑃(𝑂𝑖
1) randomly and extend the cross path set by 

𝑝∗ + 𝑝1 for all 𝑝1 ∈ 𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖1

1 ). Update cross path set 𝑃𝑐𝑟𝑜𝑠𝑠
(1)

. Then gather all paths for set 

𝑃(𝑂𝑖
2) passing through each node 𝑂𝑖

2 ∈ 𝑂2. 

 

Thirdly, we can recursively construct the direct path set 𝑃𝑑𝑖𝑟
(𝑘)

 and cross path set 𝑃𝑐𝑟𝑜𝑠𝑠
(𝑘)

 in 

sub-graph 𝐺(𝑘)  with the 𝑘 -th and 𝑘 +1-th layers. As described in the discussion of 

sub-graph 𝐺(2), get direct path set 𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘) and cross path set 𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖

𝑘) for each node 

𝑂𝑖
𝑘 ∈ 𝑂𝑘 . Let 𝑃𝑑𝑖𝑟

(𝑘)
= {𝑃𝑑𝑖𝑟(𝑂𝑖

𝑘)|𝑂𝑖
𝑘 ∈ 𝑂𝑘}  and 𝑃𝑐𝑟𝑜𝑠𝑠

(𝑘)
= {𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖

𝑘)|𝑂𝑖
𝑘 ∈ 𝑂𝑘}. Update 

direct path set 𝑃𝑑𝑖𝑟
(𝑘)

 by concatenating each direct path 𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘) ∈  𝑃𝑑𝑖𝑟

(𝑘)
  with all paths  

ending at 𝑃(𝑂𝑖
𝑘) . Update cross path set 𝑃𝑐𝑟𝑜𝑠𝑠

(𝑘)
 by concatenating each cross path 

𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖
𝑘) ∈ 𝑃𝑐𝑟𝑜𝑠𝑠

(𝑘)
 with one randomly picked path ending at 𝑃(𝑂𝑖

𝑘) for each node 𝑂𝑖
𝑘 at 

the 𝑘-th layer, where path set 𝑃(𝑂𝑖
𝑘) includes all direct paths and cross paths reaching node 

𝑂𝑖
𝑘 from the input layer. Then we can get all paths reaching each node 𝑂𝑖

𝑘+1 ∈ 𝑂𝑘+1 for 

path set 𝑃(𝑂𝑖
𝑘+1). Repeat this procedure till 𝑘 = 𝐿 − 1, and get the updated direct path set 

𝑃𝑑𝑖𝑟
(𝐿−1)

and cross path set 𝑃𝑐𝑟𝑜𝑠𝑠
(𝐿−1)

. Let 𝐵 = 𝑃𝑑𝑖𝑟
(𝐿−1)

∪ 𝑃𝑐𝑟𝑜𝑠𝑠
(𝐿−1)

. More details refer to 

Subroutine(𝑮). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 Constructing independent path 

 

 
                                                     Fig. 4 Proof of basis path set 

Fig. 3 is 3-layers unbalanced network. In the first two layers, we can get 2 direct paths 

(𝑂1
0, 𝑂1

1) and (𝑂2
0, 𝑂2

1) and get the third direct path by connecting 𝑂3
0 and 𝑂2

1. Next, we can 

get three dashed cross paths. So one solid direct path and two dashed cross paths in path set 

𝑃(𝑂1
1) = {(𝑂1

0, 𝑂1
1), (𝑂2

0, 𝑂1
1), (𝑂3

0, 𝑂1
1)} reaching node 𝑂1

1.Three paths in path set 𝑃(𝑂2
1) =

{(𝑂1
0, 𝑂2

1), (𝑂2
0, 𝑂2

1), (𝑂3
0, 𝑂2

1)} reaching 𝑂2
1. Direct path set 𝑃𝑑𝑖𝑟

(1)
={(𝑂1

1, 𝑂1
2), (𝑂2

1, 𝑂2
2)} and 

cross path set 𝑃𝑐𝑟𝑜𝑠𝑠
(1)

= {(𝑂1
1, 𝑂2

2), (𝑂1
1, 𝑂3

2), (𝑂2
1, 𝑂1

2), (𝑂2
1, 𝑂3

2)}. The direct path needs accept 
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any path from the lower level. So the concatenated direct path set 𝑃𝑑𝑖𝑟(𝑂1
1) = {(𝑂1

0, 𝑂1
1, 𝑂1

2),
(𝑂2

0, 𝑂1
1, 𝑂1

2), (𝑂3
0, 𝑂1

1, 𝑂1
2) } and 𝑃𝑑𝑖𝑟(𝑂2

1) =  {(𝑂1
0, 𝑂2

1, 𝑂2
2), (𝑂2

0, 𝑂2
1, 𝑂2

2), (𝑂3
0, 𝑂2

1, 𝑂2
2) }. 

Randomly pick path (𝑂2
0, 𝑂1

1) for 𝑂1
1 and get the concatenated cross path set 𝑃𝑐𝑟𝑜𝑠𝑠(𝑂1

1) =
{(𝑂2

0, 𝑂1
1, 𝑂2

2), (𝑂2
0, 𝑂1

1, 𝑂3
2)} . We can also get 𝑃𝑐𝑟𝑜𝑠𝑠(𝑂2

1) = {(𝑂2
0, 𝑂2

1, 𝑂1
2), (𝑂2

0, 𝑂2
1, 𝑂3

2)} . 

Therefore, 𝑃(𝑂1
2) ={(𝑂1

0, 𝑂1
1, 𝑂1

2), (𝑂2
0, 𝑂1

1, 𝑂1
2), (𝑂3

0, 𝑂1
1, 𝑂1

2), (𝑂2
0, 𝑂2

1, 𝑂1
2)}, 𝑃(𝑂2

2)={(𝑂1
0, 

𝑂2
1, 𝑂2

2), (𝑂2
0, 𝑂2

1, 𝑂2
2), (𝑂3

0, 𝑂2
1, 𝑂2

2), (𝑂2
0, 𝑂1

1, 𝑂2
2)}and 𝑃(𝑂3

2) = {(𝑂2
0, 𝑂1

1, 𝑂3
2), (𝑂2

0, 𝑂2
1, 𝑂3

2)}. 

 

Now we will use induction on the layer of 𝑘 to prove that |𝐵(𝑘)| = 𝑚(𝑘) − 𝐻(𝑘), where 

𝑚(𝑘) is the number of the edges and 𝐻(𝑘) is the number of the hidden nodes in sub-graph 

𝐺(𝑘)′. Here 𝐺(𝑘)′ is the sub-graph of 𝐺 from 0-th layer till 𝑘 + 1-th layer in graph 𝐺 and 

path set 𝐵(𝑘) = 𝑃𝑑𝑖𝑟
(𝑘)

∪ 𝑃𝑐𝑟𝑜𝑠𝑠
(𝑘)

 in 𝐺(𝑘)′. 
Basis step: 𝑘 = 0. Sub-graph 𝐺(0)′ = 𝐺(0) consists of only 0-th and 1-th layers without 

hidden nodes. |𝐵(0)|=𝑚(0) − 𝐻(0) is trivial according to the construction of direct and 

cross paths. Note that the direct path set and cross path set between only two layers exactly 

cover all edges.  

Induction step: 𝑘 ≥ 1 . We suppose that the claim |𝐵(𝑘 − 1)| = 𝑚(𝑘 − 1) − 𝐻(𝑘 − 1) 

holds for 𝐺(𝑘 − 1)′ with layers less than 𝑘 + 1. The procedure of updating set  𝑃𝑑𝑖𝑟
(𝑘)

 and 

set 𝑃𝑐𝑟𝑜𝑠𝑠
(𝑘)

 in 𝐺(𝑘)  produces totally ∑ |𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘)|𝑂𝑖

𝑘∈𝑂𝑘 *|  𝑃(𝑂𝑖
𝑘) |+ |𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖

𝑘 )| paths. 

According to the assumption, ∑ |𝑃(𝑂𝑖
𝑘)|𝑂𝑖

𝑘∈𝑂𝑘 = 𝑚(𝑘 − 1) − 𝐻(𝑘 − 1)  and |𝑂𝑘|  is the 

number of nodes in 𝑘 -th layer. Therefore, after updating ∑ |𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘)|𝑂𝑖

𝑘∈𝑂𝑘 +

|𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖
𝑘)|=  𝑚(𝑘) − 𝑚(𝑘 − 1) , where  𝑚(𝑘) − 𝑚(𝑘 − 1)  is the number of increased 

edges after the k-th layer is included. As mentioned in the basis step and Lemma 1, the direct 

path set and cross path set between only any two layers exactly cover all edges between them. 

According to the rule of path construction in 𝐺(𝑘), |𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘)| = 1 for any node 𝑂𝑖

𝑘 ∈ 𝑂𝑘 .  
Hence, 

|𝐵(𝑘)| = ∑ |𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘)|𝑂𝑖

𝑘∈𝑂𝑘 *| 𝑃(𝑂𝑖
𝑘)|+|𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖

𝑘)| 

= ∑ |𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘)|𝑂𝑖

𝑘∈𝑂𝑘 *| 𝑃(𝑂𝑖
𝑘)|+∑ |𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖

𝑘)|𝑂𝑖
𝑘∈𝑂𝑘  

= ∑ |𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘)|𝑂𝑖

𝑘∈𝑂𝑘 *| 𝑃(𝑂𝑖
𝑘)|+𝑚(𝑘) − 𝑚(𝑘 − 1) − ∑ |𝑃𝑑𝑖𝑟(𝑂𝑖

𝑘)|𝑂𝑖
𝑘∈𝑂𝑘  

= ∑ 1𝑂𝑖
𝑘∈𝑂𝑘 ∗ (|𝑃(𝑂𝑖

𝑘)| − 1) +𝑚(𝑘) − 𝑚(𝑘 − 1) 

= 𝑚(𝑘 − 1) − 𝐻(𝑘 − 1) − |𝑂𝑘|+𝑚(𝑘) − 𝑚(𝑘 − 1) = 𝑚(𝑘) − 𝐻(𝑘). 

Repeat this induction step till 𝑘 = 𝐿 − 1. By the induction hypothesis, |𝐵(𝐿 − 1)| = 𝑚(𝐿 −
1) − 𝐻(𝐿 − 1). Sub-graph 𝐺(𝐿 − 1)′is graph 𝐺, 𝑚(𝐿 − 1) is the number 𝑚 of the edges 

in 𝐺 and 𝐻(𝐿 − 1) is the number 𝐻 of the hidden nodes in 𝐺. Hence, |𝐵| = 𝑚 − 𝐻. 

 

Next, we will discuss  𝐵(𝐿 − 1) is a basis path set for graph 𝐺. First, all edges in 𝐺 are 

covered by 𝐵(𝐿 − 1), because every edge between any two consecutive layers is either direct 

path set or cross path. Secondly, path set 𝐵(𝐿 − 1)  is independent, because no path 𝑝 ∈
𝐵(𝐿 − 1) can be represented by 𝐵(𝐿 − 1) /𝑝 for the recursive way of constructing direct 

path and cross path. Then, we will prove that any path 𝑝 ∈ 𝑃/𝐵(𝐿 − 1)  in graph 𝐺 can be 

represented by the elements of 𝐵(𝐿 − 1)  through finite path operations based on edge 

swapping. For simplicity, suppose that any edge swapping only takes place within the same 

layers and all edge swapping is done consecutively in succession. Some other cases can be 

analyzed in the same way. Given any target path 𝑝 =

(𝑂𝑖∗
0 , 𝑒0, … , 𝑂𝑖∗

𝑗1 , 𝑒𝑗1
, … , 𝑂𝑖∗

𝑗𝑡 , 𝑒𝑗𝑡
, … , 𝑂𝑖∗

𝑗𝑇 , 𝑒𝑗𝑇
, 𝑂𝑖∗

𝑗𝑇+1 … , 𝑂𝑖𝐿
∗

𝐿 ) ∈ 𝑃/𝐵(𝐿 − 1),  we can find one 

path 𝑝0 ∈ 𝐵(𝐿 − 1)  such that 𝑝 and 𝑝0 start from the same input 𝑂𝑖∗
0  and both paths 

share as many edges as possible after node 𝑂𝑖∗
0 . Let 𝑂𝑖∗

𝑗1  be the layer node where paths 𝑝 

and 𝑝0 separate and let 𝑂𝑖∗
𝑗𝑇+1be the node where paths 𝑝 and 𝑝0 merge again. Assume 

𝑝0 = (𝑂𝑖∗
0 , 𝑒0, … , 𝑂𝑖∗

𝑗1 , 𝑓𝑗1
, 𝑂

𝑖′
𝑗2 … , 𝑂

𝑖′
𝑗𝑡 , 𝑓𝑗𝑡

, … , 𝑂
𝑖′
𝑗𝑇 , 𝑓𝑗𝑇

, 𝑂𝑖∗
𝑗𝑇+1 … , 𝑂𝑖∗

𝐿 ) , where node 𝑂
𝑖′
𝑗𝑡 ≠ 𝑂𝑖∗

𝑗𝑡  



and 2 ≤ 𝑡 ≤ 𝑇 ≤ 𝐿 − 1. Find paths 𝑝1,…, 𝑝𝑡,…,𝑝𝑇 in path set 𝐵(𝐿 − 1) such that path 𝑝𝑡 

takes only edge 𝑒𝑗𝑡
 at 𝑂𝑖∗

𝑗𝑡, 1≤ 𝑡 ≤ 𝑇 ≤ 𝐿 − 1. For example, 𝑝𝑡 = 𝑝𝑡
𝑙𝑜𝑤𝑒𝑟 + 𝑒𝑗𝑡

+ 𝑝𝑡
𝑢𝑝𝑝𝑒𝑟

 as 

shown in Fig. 4. The previous discussion turns out that only one direct path can leave each 

hidden node 𝑂𝑖∗
𝑗𝑡in the 𝑗𝑡-th layer. In Fig. 4, the blue solid path is the starting path 𝑝0 and 

blue dashed path is the target 𝑝. Red path 𝑝𝑡 and 𝑝𝑡−1 pass 𝑂𝑖∗
𝑗𝑡 , and 𝑒𝑗𝑡−1

∉ 𝑝𝑡. So 𝑒𝑗𝑡
 is 

a cross path within 𝑗𝑡-th and 𝑗𝑡+1-th layers, otherwise path 𝑝𝑡−1 can stretch longer. Set 

𝑝1′=𝑝1
𝑙𝑜𝑤𝑒𝑟 + (𝑓𝑗1

,…, 𝑓𝑗𝑇
) + 𝑝𝑇

𝑢𝑝𝑝𝑒𝑟
. Sub-path 𝑝1

𝑙𝑜𝑤𝑒𝑟 and 𝑓𝑗1
 share node 𝑂𝑖∗

𝑗1 for 𝑒𝑗1
 and 

cross path 𝑒𝑗1
 takes the randomly selected path 𝑝1. If 𝑓𝑗1

is a cross path, it must follow 

𝑝1
𝑙𝑜𝑤𝑒𝑟 according to the rule of construction. So 𝑓𝑗1

 is a direct path and admissible for all 

paths passing through 𝑂𝑖∗
𝑗1 . In the meantime, paths 𝑝0 and 𝑝𝑇  share the sub-path from 

𝑂𝑖∗
𝑗𝑇+1  till 𝑂𝑖𝐿

𝐿 , which turns out that 𝑒𝑗𝑇+1
 is a direct path and admissible for path set 

𝑃 (𝑂𝑖∗
𝑗𝑇+1). And (𝑓𝑗1

,…, 𝑓𝑗𝑇
) is part of path 𝑝0. Therefore, 𝑝1′ forms a path in 𝐵(𝐿 − 1), 

because edge 𝑓𝑗1
is a direct path and 𝑒𝑗𝑇+1

 is a direct path too. Let 𝑝𝑡 − 𝑒𝑗𝑡
=𝑝𝑡

𝑙𝑜𝑤𝑒𝑟 + 𝑝𝑡
𝑢𝑝𝑝𝑒𝑟

. 

𝑝𝑡
𝑙𝑜𝑤𝑒𝑟 and 𝑝𝑡−1

𝑢𝑝𝑝𝑒𝑟
 share node 𝑂𝑖∗

𝑗𝑡 . Because path 𝑒𝑗𝑡
 is a cross path and 𝑝𝑡 passes it, so 

path 𝑝𝑡
𝑙𝑜𝑤𝑒𝑟 is the randomly selected path. Moreover 𝑝𝑡−1 passes 𝑂𝑖∗

𝑗𝑡too, so 𝑓𝑗𝑡
 must be a 

direct path and admissible for 𝑃 (𝑂𝑖∗
𝑗𝑡). Therefore, 𝑝𝑡′=𝑝𝑡

𝑙𝑜𝑤𝑒𝑟 + 𝑝𝑡−1
𝑢𝑝𝑝𝑒𝑟

 forms a path in 

𝐵(𝐿 − 1) for 2 ≤ 𝑡 ≤ 𝑇. Finally, 

𝑝 = 𝑝0 + 𝑒𝑗1
− 𝑓𝑗1

+ ⋯ + 𝑒𝑗𝑡
− 𝑓𝑗𝑡

…+𝑒𝑗𝑇
− 𝑓𝑗𝑇

= 𝑝0 + 𝑝1 ∖ (𝑝1
𝑙𝑜𝑤𝑒𝑟 + 𝑝1

𝑢𝑝𝑝𝑒𝑟
) − 𝑓𝑗1

+ ⋯ +

𝑝𝑡 ∖ (𝑝𝑡
𝑙𝑜𝑤𝑒𝑟 + 𝑝𝑡

𝑢𝑝𝑝𝑒𝑟
) −  𝑓𝑗𝑡

…+ 𝑝𝑇 ∖ (𝑝𝑇
𝑙𝑜𝑤𝑒𝑟 + 𝑝𝑇

𝑢𝑝𝑝𝑒𝑟
) − 𝑓𝑗𝑇

= 𝑝0 + 𝑝1 … +𝑝𝑡 … + 𝑝𝑇 −

(𝑝1
𝑙𝑜𝑤𝑒𝑟 + 𝑓𝑗1

… + 𝑓𝑗𝑇
+ 𝑝𝑇

𝑢𝑝𝑝𝑒𝑟
) − (𝑝1

𝑢𝑝𝑝𝑒𝑟
+ 𝑝2

𝑙𝑜𝑤𝑒𝑟) … −(𝑝𝑡−1
𝑢𝑝𝑝𝑒𝑟

+ 𝑝𝑡
𝑙𝑜𝑤𝑒𝑟) … + (𝑝𝑇−1

𝑢𝑝𝑝𝑒𝑟
+

𝑝𝑇
𝑙𝑜𝑤𝑒𝑟)  = 𝑝0 + 𝑝1…+𝑝𝑡 … + 𝑝𝑇 − 𝑝1

′ … − 𝑝𝑡
′ … − 𝑝𝑇′. 

 

Therefore, any given target path 𝑝 ∈ 𝑃/𝐵(𝐿 − 1)  can be represented by finite steps of path 

operations in 𝐵(𝐿 − 1). So 𝐵 = 𝐵(𝐿 − 1) is a basis path set with cardinality of 𝑚 − 𝐻. ∎ 

 

4 Hierarchical Algorithm to find the basis path set 
The proof of Lemma 2 investigates uniquely excellent properties of direct paths and cross 

paths when constructing the basis paths recursively in neural network 𝐺. These properties 

allow any path 𝑝 ∈ 𝑃 can be represented by basis path set 𝐵, in graph theory. However, this 

neural network 𝐺 is a graph without skipping-edges. In this section, we will explore the 

structure of fully connected graph 𝐺 with any possible edge-skipping first and then offer one 

hierarchical idea to find basis path set 𝐵 in such neural network without shared layers 

between any independent substructures. 

 

Definition 9 (structure path) Given fully connected neural network 𝐺, if all paths in 𝑃 

passes through the same layers consecutively, any path 𝑝 ∈ 𝑃can be called as the structure 

path of neural network 𝐺, since such path can express the structure information of 𝐺.  

 

Here the structure information of neural network 𝐺  means how the path 𝑝 ∈ 𝑃 passes 

through layers from the input layer to the output layer, i.e., how the path 𝑝 ∈ 𝑃 skips over 

layers. Especially any path 𝑝 ∈ 𝑃  in fully connected neural network 𝐺  without edge 

skipping is a structure path, because all paths in 𝑃 pass the layers homogenously. 

 

Property 1 If fully connected neural network graph 𝐺 has a structure path 𝑝, then graph 𝐺 

is homogenous, i.e., all paths from the input layer to the output layer homogenously pass 

through the same layers consecutively as 𝑝. 

 

As we know, the role of every node in the 𝑙-th layer in the fully connected network 𝐺 is 

equivalent, so any node 𝑂𝑖∗
𝑙  can be the representative of the rest nodes in the 𝑙-th layer. This 



motivates us that we can decompose the complicated structure of graph 𝐺 into several 

distinct and simple substructures and each substructure has its unique structure path. For each 

substructure, we induce the corresponding sub-graph by including all layers passed by the 

structure path 𝑝 and including all edges connecting to these layers in the order of the layers 

passed by 𝑝 in graph 𝐺.  

 

Definition 10 (substructure path) Let 𝑉𝑆 = {𝑂𝑖∗
𝑙 |𝑙 = 0, … , 𝐿}, where 𝑂𝑖∗

𝑙  is the random  

node selected from the 𝑙-th layer of network 𝐺. Let 𝐸𝑆 = {(𝑂𝑖∗
𝑘 , 𝑂𝑖∗

𝑙 ) ∈ 𝐸|0 ≤ 𝑘 < 𝑙 ≤ 𝐿}. 

In this simplified sub-graph 𝐺𝑆 =(𝑉𝑆, 𝐸𝑆) with only one node at each layer, we can get all 

paths starting from 𝑂𝑖∗
0  to 𝑂𝑖∗

𝐿  by breadth-first search.  Denote this path set as 𝑃𝑆 and each 

path 𝑝 ∈ 𝑃𝑆 is called substructure path. 

 

Lemma 3 Path set 𝑃𝑆 covers all substructure information in fully connected neural network 

𝐺. 

Proof: Neural network 𝐺 is fully connected, any node in the 𝑙-th layer can represent the rest 

nodes in this layer, when discussing the structure in formation. Since we find all paths from 

node 𝑂𝑖∗
0  to node 𝑂𝑖∗

𝐿  by breadth-first search, so it is trivia that path set 𝑃𝑆 covers all 

substructure information in 𝐺.                            ∎ 

 

In fully connected network in Fig. 5, sub-graph 𝐺𝑏𝑙𝑢𝑒 consists of all blue solid edges and 

sub-graph 𝐺𝑟𝑒𝑑 consists of all red dashed edges. Path (𝑂1
0, 𝑂1

1, 𝑂1
2) and path (𝑂1

0, 𝑂1
2) are 

two substructure paths and corresponding sub-graphs are 𝐺𝑏𝑙𝑢𝑒 and 𝐺𝑟𝑒𝑑.  

 

By taking the idea of adjacent matrix in graph theory, we can express each substructure path 

𝑝𝑖 ∈ 𝑃𝑆 as a 0-1 vector 𝛼𝑖with (𝐿 + 1)2elements. First, construct one (𝐿 + 1) × (𝐿 + 1) 

adjacency matrix 𝑀𝑖 such that its element 𝑀𝑖(𝑗, 𝑙) is one when there is edge from 𝑗-th layer 

to the 𝑙-th layer and zero when there is no edge in path 𝑝𝑖, where 𝑗 = 0,1, … , 𝐿 and 𝑙 =
0,1, … , 𝐿. Obviously, matrix 𝑀𝑖 is an upper triangle and sparse matrix. Then we reshape 

matrix 𝑀𝑖  into one 1 × (𝐿 + 1)2  vector 𝛼𝑖 , by letting 𝛼𝑖 =
[𝑀𝑖(0, : ), … , 𝑀𝑖(𝑗, : ), … , 𝑀𝑖(𝐿, : )], where 𝑀𝑖(𝑗, : ) is the 𝑗 + 1-th row of matrix 𝑀𝑖for the 

edges leaving 𝑗-th layer. So the structure of 𝑝𝑖 determines the vector 𝛼𝑖, and we call this 

(𝐿 + 1)2-dimensional vector 𝛼𝑖 as substructure path vector of 𝑝𝑖. In Fig. 5, the vector of 

substructure path (𝑂1
0, 𝑂1

1, 𝑂1
2)  is (0,1,0,0,0,1,0,0,0)  and the vector of (𝑂1

0, 𝑂1
2) 

is (0,0,1,0,0,0,0,0,0) . Given the substructure path set 𝑃𝑆  in 𝐺𝑆 and corresponding 

substructure path vector set {𝛼𝑖|𝑖 = 1,2, … , |𝑃𝑆|}, one substructure path vector 𝛼𝑖 maps to 

one substructure path 𝑝𝑖, and one substructure path 𝑝𝑖 decides one vector 𝛼𝑖. According to 

the previous definition of path operation, there is one one-one mapping from the linear 

combination of substructure path vectors in {𝛼𝑖|𝑖 = 1,2, … , |𝑃𝑆|} to the path operation in 𝑃𝑆，
i.e., 𝑝𝑡 = 𝑝𝑟1

… + 𝑝𝑟𝑗
… + 𝑝𝑟𝑑

− 𝑝𝑠1
… − 𝑝𝑠ℎ

… − 𝑝𝑠𝑚
 corresponds to 𝛼𝑡 = 𝛼𝑟1

… + 𝛼𝑟𝑗
… +

𝛼𝑟𝑑
− 𝛼𝑠1

… − 𝛼𝑠ℎ
… − 𝛼𝑠𝑚

, where 𝑟𝑗 ∈ {1,2, … , |𝑃𝑆|}and𝑠ℎ ∈ {1,2, … , |𝑃𝑆|}.  
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network 𝐺 and substructure path set 𝑃𝑆. If subset {𝛼𝑖} 𝑖𝑛𝑑 of 0-1 substructure path vector 

set {𝛼𝑖} with respect to 𝑃𝑆 is linearly independent, the corresponding substructure path set 

𝑃𝑖𝑛𝑑
𝑆 is called to be independent, and the structures of induced sub-graphs from the 

corresponding paths in 𝑃𝑖𝑛𝑑
𝑆  are called independent substructures. Otherwise, 𝑃𝑖𝑛𝑑

𝑆  is called 

to be dependent. When subset {𝛼𝑖} 𝑖𝑛𝑑  is maximal linearly independent, we call the 

corresponding 𝑃𝑖𝑛𝑑
𝑆  as maximal independent substructure path set in graph 𝐺, where |𝑃𝑖𝑛𝑑

𝑆 | 

is the number of substructure paths in 𝑃𝑖𝑛𝑑
𝑆 . 

 

Therefore, we can get maximal independent substructure path set 𝑃𝑖𝑛𝑑
𝑆  by numerical linear 

algebra method. One substructure path within 𝑃𝑖𝑛𝑑
𝑆  couldn’t be linearly represented by the 

rest of substructure paths in 𝑃𝑖𝑛𝑑
𝑆 . The substructure path 𝑝 ∈ 𝑃𝑆 ∖ 𝑃𝑖𝑛𝑑

𝑆  can be represented 

by 𝑃𝑖𝑛𝑑
𝑆  by path operations and vector linear combination. In Fig. 5, these two 9-dimensional 

vectors form maximal linearly independent substructure path set.  

 

Property 2 Maximal independent substructure path set 𝑃𝑖𝑛𝑑
𝑆  can represent the whole 

structure information of neural network 𝐺.  

 

Note that the sub-graphs of corresponding substructure paths may overlap at some layers but 

not all layers and each sub-graph with homogenous layer-passing structure can be treated like 

a fully connected graph without any skipping edges. Therefore, hierarchical Algorithm HBPS 

is proposed to find the basis path set in regular fully connected graph with edge-skipping. 

First, the upper level of the hierarchical idea is to decompose the complicated structure of 

neural network 𝐺 into |𝑃𝑖𝑛𝑑
𝑆 | maximal independent substructures, which are simple and 

whose induced sub-graph can be treated as network without edge skipping. Any substructure 

path 𝑝 ∈ 𝑃𝑆 ∖ 𝑃𝑖𝑛𝑑
𝑆  can be represented by 𝑃𝑖𝑛𝑑

𝑆 . Substantially the upper level of algorithm is 

seeking the inter-structure independence. Then, the lower level of the hierarchical idea will 

find the basis path set 𝐵𝑟 for each sub-graph 𝐺𝑟 induced by 𝑝𝑟 ∈ 𝑃𝑖𝑛𝑑
𝑆  in parallel. For each 

𝑝𝑟, we construct sub-graph 𝐺𝑟 of 𝐺 by taking all nodes from the layers through which 𝑝𝑟 

passes and taking all edges connecting these nodes in 𝐺  in the same order as 𝑝𝑟 . In 

sub-graph 𝐺𝑟, call Subroutine(𝐺𝑟) which is recursively designed to find the basis path set for 

regular unbalanced graph described in Lemma 2. We must emphasize that Algorithm HBPS 

can be only applied in the network without shared layers between any two substructures such 

as Fig. 6(a). Two substructure paths in Fig. 6(b) share the edge from the 2-th layer to 3-th 

layer, and two substructure paths in Fig. 6(c) share the edge from the 0-th layer to 1-th layer.  

 

Algorithm HBPS 

Input: Fully connected unbalanced neural network 𝐺 = (𝑉, 𝐸) with 𝐿 layers 

Output: Path set 𝐵 of neural network 𝐺 

 

% Step 1. (The upper level) % 

For 𝑙 = 0, … , 𝐿 do 

Pick up one node 𝑂𝑖∗
𝑙  randomly at the 𝑙-th layer of graph 𝐺.  

End For 

Set the node subset 𝑉𝑆 = {𝑂𝑖∗
𝑙 |0 ≤ 𝑙 ≤ 𝐿}  and edge subset 𝐸𝑆 = {(𝑂𝑖∗

𝑗
, 𝑂𝑖∗

𝑙 ) ∈ 𝐸|𝑂𝑖∗
𝑗

∈

𝑉𝑆, 𝑂𝑖∗
𝑙 ∈ 𝑉𝑆, 0 ≤ 𝑗 < 𝑙 ≤ 𝐿}. Let 𝑃𝑆 be the path set for all paths starting from node 𝑂𝑖∗

0  to 

node 𝑂𝑖∗
𝐿  by breadth-first search in sub-graph 𝐺𝑆 =(𝑉𝑆, 𝐸𝑆).   

For 𝑖 = 1: |𝑃𝑆| do 

For path 𝑝𝑖 ∈ 𝑃𝑆, construct adjacency matrix 𝑀𝑖,  

𝑀𝑖(𝑗, 𝑙) = {
1,    if there is edge from 𝑗 − th layer to the 𝑙 − th layer 
0,    otherwise                                                                             

 
𝑗 = 0,1, … , 𝐿
𝑙 = 0,1, … , 𝐿

 

Let substructure path vector 𝛼𝑖 = [𝑀𝑖(0, : ), … , 𝑀𝑖(𝑗, : ), … , 𝑀𝑖(𝐿, : )]. 
End For 



Find the maximal linearly independent subset {𝛼𝑖} 𝑖𝑛𝑑  of {𝛼𝑖}  and its corresponding 

substructure path set 𝑃𝑖𝑛𝑑
𝑆  by numerical linear algebra method.  

For r= 1: |𝑃𝑖𝑛𝑑
𝑆 | do 

    For 𝑖 = 1: |𝑃𝑖𝑛𝑑
𝑆 | do 

         If 𝐸(𝑝𝑖) ∩ 𝐸(𝑝𝑟) ≠ ∅, output ’There exist shared edges between two independent 

substructure paths’ and exit. 

    End 

End 

 

%Step 2. (The lower level) % 

For r= 1: |𝑃𝑖𝑛𝑑
𝑆 | do    

For substructure path 𝑝𝑟 ∈ 𝑃𝑆, let node subset 𝑉𝑟 = {𝑂𝑙 ⊂ 𝑉|𝑂𝑖∗
𝑙 ∈ 𝑝𝑟, 0 ≤ 𝑙 ≤ 𝐿} and 

𝐸𝑟 = {(𝑂𝑖
𝑙 , 𝑂𝑖′

𝑘 ) ∈ 𝐸|𝑂𝑙 ∈ 𝑉𝑟, 𝑂𝑘 ∈ 𝑉𝑟, 𝑖 = 1,2, … , |𝑂𝑙|, 𝑖′ = 1,2, … , |𝑂𝑘|} . Let sub-graph 

𝐺𝑟 = (𝑉𝑟, 𝐸𝑟). % Construct sub-graph 𝐺𝑟 with the same structure as substructure path 𝑝𝑟%      

Run Subroutine (𝐺𝑟) on 𝐺𝑟 and output basis path set 𝐵𝑟 of 𝐺𝑟.  

End For  

Output 𝐵 = ⋃ 𝐵𝑟
|𝑃𝑖𝑛𝑑

𝑆 |

𝑟=1 . 

 

Subroutine(𝐺): 
% This subroutine is to calculate the basis path set on graph without any edge skipping over layers 

Input: Fully connected neural network graph 𝐺 = (𝑉, 𝐸) without any edge skipping over 

layers. 

Output: Basis path set 𝐵 in graph 𝐺 

For 𝑘 = 0: 𝐿 − 1 do    

Let 𝐸𝑘 = {𝑒 ∈ 𝐺|𝑒 leaves from 𝑘-th layer and enters 𝑘 + 1-th layer }. 
    % Step 1. Construct the direct path set. 

Let sub-graph 𝐺(𝑘) = (𝑂𝑘 ∪ 𝑂𝑘+1, 𝐸𝑘). 

If |𝑂𝑘| ≥ |𝑂𝑘+1| do 

   Find |𝑂𝑘+1| vertex disjoint paths by depth-first searching and let the path set be 

𝑃𝑑𝑖𝑟
(𝑘)

. For 𝑣 ∈ 𝑂𝑘 ∖ 𝑉(𝑃𝑑𝑖𝑟
(𝑘)

), pick up one node 𝑂𝑖′
𝑘+1 ∈ 𝑂𝑘+1 randomly and construct path 

(𝑣, 𝑂𝑖′
𝑘+1). Set 𝑃𝑑𝑖𝑟

(𝑘)
= 𝑃𝑑𝑖𝑟

(𝑘)
∪ (𝑣, 𝑂𝑖′

𝑘+1). % 𝑃𝑑𝑖𝑟
(𝑘)

 is direct path set. 

Else do  

   Find |𝑂𝑘| vertex disjoint paths by depth-first searching and let the path set be 𝑃𝑑𝑖𝑟
(𝑘)

.  

End If     
% Step 2. Construct the cross path set. % 

Set cross path set 𝑃𝑐𝑟𝑜𝑠𝑠
(𝑘)

=𝐸𝑘 ∖ 𝐸(𝑃𝑑𝑖𝑟
(𝑘)

.  

For 𝑖 = 1: |𝑂𝑘| 

    Let the path set 𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘)= { 𝑝 ∈ 𝑃𝑑𝑖𝑟

(𝑘)
|the tail of 𝑝 is node 𝑂𝑖

𝑘} and 𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖
𝑘)= 

{𝑝 ∈ 𝑃𝑐𝑟𝑜𝑠𝑠
(𝑘)

|the tail of 𝑝 is node 𝑂𝑖
𝑘}. % Classify direct paths and cross paths for each node 𝑂𝑖

𝑘 ∈ 𝑂𝑘. 

End For 
% Step 3. Concatenate the direct paths and cross paths from the 𝑘 − 1-th layer. %  
If 𝑘 ≠ 0 do % If 𝑘 = 0, there is no concatenation for any path and go to Step 4 directly. 

   For 𝑖 = 1: |𝑂𝑘| do 

        Let 𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘)= {𝑝0 + 𝑝1| 𝑝1 ∈ 𝑃𝑑𝑖𝑟(𝑂𝑖

𝑘), 𝑝0 ∈ 𝑃(𝑂𝑖
𝑘)} for node 𝑂𝑖

𝑘 ∈ 𝑂𝑘. 

        % form |𝑃(𝑂𝑖
𝑘)| direct paths% 

        Select one path 𝑝∗ ∈ 𝑃(𝑂𝑖
𝑘) randomly and let 𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖

𝑘)={ 𝑝∗ + 𝑝1 | 𝑝1 ∈

𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖
𝑘)}.  % extend all cross paths % 

   End For 

   Update 𝑃𝑑𝑖𝑟
(𝑘)

=∪
𝑂𝑖

𝑘∈𝑂𝑘 𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘) and 𝑃𝑐𝑟𝑜𝑠𝑠

(𝑘)
=∪

𝑂𝑖
𝑘∈𝑂𝑘 𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖

𝑘). 

 End If 
 % Step 4. Classify the paths for the nodes in the 𝑘 + 1-th layer. % 



 For 𝑖 = 1: |𝑂𝑘+1| do 

       Let the path set 𝑃(𝑂𝑖
𝑘+1)={𝑝 ∈ 𝑃𝑑𝑖𝑟

(𝑘)
∪ 𝑃𝑐𝑟𝑜𝑠𝑠

(𝑘)
| the head of 𝑝 is node 𝑂𝑖

𝑘+1}.  

 End For 

End for  

Output basis path set 𝐵 = 𝑃𝑑𝑖𝑟
(𝐿−1)

∪ 𝑃𝑐𝑟𝑜𝑠𝑠
(𝐿−1)

.         ∎ 

 

Theorem 1 Given a fully connected neural network graph 𝐺, Algorithm HBPS can find a 

basis path set 𝐵 = ⋃ 𝐵𝑟
|𝑃𝑖𝑛𝑑

𝑆 |

𝑟=1 . The cardinality of set 𝐵 is ∑ (𝑚𝑟 − 𝐻𝑟)
|𝑃𝑖𝑛𝑑

𝑆 |

𝑟=1 , where 𝑃𝑖𝑛𝑑
𝑆  is 

the maximal independent substructure path set of graph 𝐺 and 𝐵𝑟 is the basis path set of 

induced sub-graph 𝐺𝑟 with respect to 𝑝𝑟 ∈ 𝑃𝑖𝑛𝑑
𝑆 . 𝑚𝑟 is the number of total edges and 𝐻𝑟 

is the number of total hidden nodes in sub-graph 𝐺𝑟. 

 

Proof: The upper level of Algorithm HBPS finds the maximal independent substructure path 

set 𝑃𝑖𝑛𝑑
𝑆  of neural network 𝐺. For any independent substructure path 𝑝𝑟 ∈ 𝑃𝑖𝑛𝑑

𝑆 , it couldn’t 

be represented by 𝑃𝑖𝑛𝑑
𝑆 ∖ {𝑝𝑟}. Any substructure path 𝑝 ∈ 𝑃𝑆 ∕ 𝑃𝑖𝑛𝑑

𝑆  can be represented by 

𝑃𝑖𝑛𝑑
𝑆 . The lower level of Algorithm HBPS finds the basis path set 𝐵𝑟 in sub-graph 𝐺𝑟 in 

parallel. In order to prove the path set 𝐵 = ⋃ 𝐵𝑟
|𝑃𝑖𝑛𝑑

𝑆 |

𝑟=1  is a basis path set, we need to prove 𝐵 

is an independent path set and every path 𝑝 ∈ 𝑃 ∖ 𝐵 can be represented by the elements of 

𝐵.  

 

First, for each sub-graph 𝐺𝑟 represented by path 𝑝𝑟 ∈ 𝑃𝑖𝑛𝑑
𝑆 , we can get basis path set 𝐵𝑟 by 

Subroutine(𝐺𝑟). All paths in set 𝐵𝑟 are independent. Secondly, for independent substructure 

paths 𝑝𝑟 ∈ 𝑃𝑖𝑛𝑑
𝑆  and 𝑝𝑠 ∈ 𝑃𝑖𝑛𝑑

𝑆  (𝑠 ≠ 𝑟), any path 𝑝 ∈ 𝐵𝑠 couldn’t be represented by 𝐵𝑟 for 

different substructure. And any path 𝑝 ∈ 𝐵𝑠 couldn’t be presented by ⋃ 𝐵𝑟
|𝑃𝑖𝑛𝑑

𝑆 |

𝑟=1,𝑟≠𝑠 . Assume 

path 𝑝𝑠
∗ ∈ 𝐵𝑠 can be represented by some path 𝑝𝑟1

′, 𝑝𝑟2
′, … , 𝑝𝑟𝑖

′, … , 𝑝𝑟𝑑
′, where we require 

all 𝑟𝑖  are distinct for 𝑝𝑟𝑖
′ ∈ 𝐵𝑟𝑖

, 𝑟𝑖 ∈ {1,2, … , |𝑃𝑖𝑛𝑑
𝑆 |} and 𝑖 = 1, … , 𝑑 . Since Property 1 

indicates that path 𝑝𝑟𝑖
′ has the same structure of 𝑝𝑟𝑖

, we reduce the path 𝑝𝑟𝑖
′ to the 

substructure path 𝑝𝑟𝑖
 and reduce 𝑝𝑠

∗  to 𝑝𝑠 . So 𝑝𝑠  can be represented by {𝑝𝑟𝑖
|𝑟𝑖 ∈

{1,2, … , |𝑃𝑖𝑛𝑑
𝑆 |, 𝑖 = 1, … , 𝑑}, which contradicts the claim that 𝑃𝑖𝑛𝑑

𝑆  is maximal independent. 

Furthermore, we will prove that any path 𝑝 ∈ 𝐵𝑠 couldn’t be represented by ⋃ 𝐵𝑟
|𝑃𝑖𝑛𝑑

𝑆 |

𝑟=1 . Note 

the constraint of Algorithm HBPS is that 𝐸(𝑝𝑖) ∩ 𝐸(𝑝𝑟) = ∅ for any 𝑝𝑖 ∈ 𝑃𝑖𝑛𝑑
𝑆   and 𝑝𝑟 ∈

𝑃𝑖𝑛𝑑
𝑆  while 𝑖 ≠ r. Because each 𝑝𝑟 ∈ 𝑃𝑖𝑛𝑑

𝑆  has unique structure, if 𝑝 ∈ 𝐵𝑠  can be 

represented by ⋃ 𝐵𝑟
|𝑃𝑖𝑛𝑑

𝑆 |

𝑟=1 , it must be 𝑝 − 𝑝𝑠,1 + 𝑝𝑟1,1 − 𝑝𝑟1,2 + ⋯ 𝑝𝑟𝑖,1 − 𝑝𝑟𝑖,2 + ⋯ + 𝑝𝑟𝑑,1 −

𝑝𝑟𝑑,2 = 0, where 𝑝𝑠,1 ∈ 𝐵𝑠, 𝑝𝑟𝑖,1 ∈ 𝐵𝑟𝑖
 and 𝑝𝑟𝑖,2 ∈ 𝐵𝑟𝑖

 with 𝑖 = 1, … , 𝑑. In other words, we 

decompose the paths into commonly shared part and unique unshared part, different 

substructure paths must appear in pair to cancel their unique structures, according to path 

operations. However, if the unique structures are cancelled, there is no common layers or 

edges for edge swapping since 𝐸(𝑝𝑖) ∩ 𝐸(𝑝𝑟) = ∅. So no paths in ⋃ 𝐵𝑟
|𝑃𝑖𝑛𝑑

𝑆 |

𝑟=1  such that 𝑝 −

𝑝𝑠,1 + 𝑝𝑟1,1 − 𝑝𝑟1,2 + ⋯ 𝑝𝑟𝑖,1 − 𝑝𝑟𝑖,2 + ⋯ + 𝑝𝑟𝑑,1 − 𝑝𝑟𝑑,2 = 0  holds. Hence, path set 𝐵 =

⋃ 𝐵𝑟
|𝑃𝑖𝑛𝑑

𝑆 |

𝑟=1  is path independent.  

 

Next we will prove that any path 𝑝 ∈ 𝑃 can be represented by independent path set 𝐵. For 

any path 𝑝 with the structure of 𝑝𝑟 ∈ 𝑃𝑖𝑛𝑑
𝑆  but 𝑝 ∉ 𝐵𝑟 , it is trivia that path 𝑝 can be 

represented by 𝐵𝑟 because 𝐵𝑟 is the basis path set of 𝐺𝑟. If 𝑝 is out of the structure range 

of 𝑃𝑖𝑛𝑑
𝑆 , the structure of 𝑝 can be represented by 𝑃𝑖𝑛𝑑

𝑆 , because 𝑝 must belong to one 

substructure of 𝑃𝑆for Lemma 3. Since the constraint requires no commonly shared layers 

between two independent substructure paths, so there is no other substructure path out of the 

structure range of 𝑃𝑆. This is because we need to do finite times of edge swapping to get a 



new path but this edge swapping is based on the shared layers according to path operations. 

Therefore, 𝐵 is a basis path set and |𝐵| = ⋃ |𝐵𝑟|
|𝑃𝑖𝑛𝑑

𝑆 |

𝑟=1 . According to Lemma 2, |𝐵𝑟| of 

fully connected graph 𝐺𝑟 without skipping edges is 𝑚𝑟 − 𝐻𝑟, where 𝑚𝑟 is the total number 

of edges and 𝐻𝑟 is the total number of hidden nodes in sub-graph 𝐺𝑟 corresponding to each 

structure path 𝑝𝑟 ∈ 𝑃𝑆. So |𝐵| = ∑ (𝑚𝑟 − 𝐻𝑟)
|𝑃𝑖𝑛𝑑

𝑆 |

𝑟=1 .                   ∎ 

 

Since every substructure path 𝑝𝑟 ∈ 𝑃𝑆 represents one type of substructure information about 

edge skipping or layer passing in graph 𝐺 , so different types of substructures can be 

combined together but no shared layers exist between two independent substructures.                                                                           

 

5 Conclusion 

In graph theory, we give the definitions of path operation and basis path in regular fully 

connected neural network. We investigate attractive properties of basis paths when 

constructing basis paths in the fully connected neural network without edge skipping. Based 

on this investigation, we propose hierarchical algorithm HBPS to find the basis path set 𝐵 in 

fully connected neural network 𝐺 with the constraint that no shared layers between two 

independent substructures. This kind neural network is one special version of fully connected 

neural network with any edge skipping structure. This algorithm decomposes the fully 

connected neural network into several independent and parallel substructures. Later algorithm 

HBPS can be extended to find basis path set for regular fully connected neural network 

without the constraint about shared layers. The research in paper opens the black box about 

how basis path set helps to achieve superior performance in the training of ReLU networks, 

and sheds light on how the basis path set works in regular neural network.  
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Appendix A 

To make the lemmas, theorems and algorithms clear, the main notations in this paper are 

summarized in Table 1. 

Table 1: Notations 

Notation Description 

𝑂𝑖
𝑙 the 𝑖-th node in 𝑙-th layer in the neural network 

𝑂𝑙 the 𝑙-th layer in the neural network 

(𝑂𝑖
𝑙 , 𝑂

𝑖′
𝑙+𝑗

) 
the directed edge between layer 𝑙 and layer 𝑙 + 𝑗, where 

1 ≤ 𝑗 ≤ 𝐿 − 𝑙, 1≤ 𝑖 ≤ |𝑂𝑙| and 1 ≤ 𝑖′ ≤ |𝑂𝑙+𝑗|. 

𝐺 = (𝑉, 𝐸) the neural network graph 𝐺  with node set 𝑉 = 𝑂0 ∪

… ∪ 𝑂𝑙 … ∪ 𝑂𝐿  and edge set 𝐸 ={ (𝑂𝑖
𝑙 , 𝑂

𝑖′
𝑙+𝑗

), 0 ≤ 𝑙 ≤

𝐿 − 1 and 1 ≤ 𝑗 ≤ 𝐿 − 𝑙} 

𝑂𝑖∗
𝑙  some node without specified position in the 𝑙-th layer 

𝑝 = (𝑂𝑖∗
0 , 𝑂𝑖∗

1′
, … , 𝑂𝑖∗

𝑗′

… , 𝑂𝑖∗
𝐿 ) 

path starting from the input layer 𝑂0 to the output 𝑂𝐿 

passing through from several hidden nodes 

𝑃 ={ (𝑂𝑖∗
0 , 𝑂𝑖∗

1′
, … , 𝑂𝑖∗

𝑗′

… , 𝑂𝑖∗
𝐿 ) 

|0 < 1′ < 2′…< 𝑗′ < 𝐿} 

set consisting of all paths from the input layer to the 

output layer in network 𝐺 

𝐵 ⊆ 𝑃 basis path set 



𝑚 = |𝐸| the number of edges in graph 𝐺 

𝐻 the number of total hidden nodes in the graph 𝐺 without 

skipping edges 

𝛼𝑖 sub-structure path vector  

𝐺(𝑘) = (𝑂𝑘 ∪ 𝑂𝑘+1, 𝐸𝑘), sub-graph with 𝐸𝑘 = {𝑒 ∈ 𝐺|𝑒  leaves from  𝑘 -th layer 

and enters 𝑘 + 1-th layer } and 0 ≤ 𝑘 ≤ 𝐿 − 1 

𝑃𝑑𝑖𝑟
(𝑘)

 
direct path set in sub-graph 𝐺(𝑘)  

𝑃𝑐𝑟𝑜𝑠𝑠
(𝑘)

 
cross path set in sub-graph 𝐺(𝑘)  

𝑃𝑑𝑖𝑟(𝑂𝑖
𝑘) direct path set passing through node 𝑂𝑖

𝑘 

𝑃𝑐𝑟𝑜𝑠𝑠(𝑂𝑖
𝑘) cross path set passing through node 𝑂𝑖

𝑘 

𝑃(𝑂𝑖
𝑘) all paths reaching node 𝑂𝑖

𝑘 

𝐺(𝑘)′ the sub-graph of 𝐺 from 0-th layer till 𝑘 + 1-th layer 

𝑚(𝑘) the number of edges in sub-graph 𝐺(𝑘)′  

𝐻(𝑘) the number of hidden nodes in sub-graph 𝐺(𝑘)′ 

𝐵(𝑘) = 𝑃𝑑𝑖𝑟
(𝑘)(𝑘) ∪ 𝑃𝑐𝑟𝑜𝑠𝑠

(𝑘)
 

path set in 𝐺(𝑘)′ 

𝐺𝑟 sub-graph of 𝐺 with the same structure information as 

𝑝𝑟 ∈ 𝑃𝑖𝑛𝑑
𝑆   

𝑉𝑆 = {𝑂𝑖∗
0 , … , 𝑂𝑖∗

𝑙 , … , 𝑂𝑖∗
𝐿 } randomly selected node sub-set for all layers 

𝐸𝑆 = {(𝑂𝑖∗
𝑗

, 𝑂𝑖∗
𝑙 ) ∈ 𝐸|𝑂𝑖∗

𝑗
∈ 𝑉𝑆, 

𝑂𝑖∗
𝑙 ∈ 𝑉𝑆, 0 ≤ 𝑗 < 𝑙 ≤ 𝐿} 

edge sub-set based on node sub-set 𝑉𝑆  

𝐺𝑆 =(𝑉𝑆, 𝐸𝑆) sub-graph contains structure information of graph 𝐺  

𝑃𝑆 sub-structure path set of original graph 𝐺 

𝐺𝑟 = (𝑉𝑟, 𝐸𝑟). sub-graph 𝐺𝑟 contains the same structure information as 

path 𝑝𝑟 ∈ 𝑃𝑆 

𝐵𝑟 independent path set of 𝐺𝑟 

 


