Skip to main content
Log in

Double Penalized Quantile Regression for the Linear Mixed Effects Model

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper proposes a double penalized quantile regression for linear mixed effects model, which can select fixed and random effects simultaneously. Instead of using two tuning parameters, the proposed iterative algorithm enables only one optimal tuning parameter in each step and is more efficient. The authors establish asymptotic normality for the proposed estimators of quantile regression coefficients. Simulation studies show that the new method is robust to a variety of error distributions at different quantiles. It outperforms the traditional regression models under a wide array of simulated data models and is flexible enough to accommodate changes in fixed and random effects. For the high dimensional data scenarios, the new method still can correctly select important variables and exclude noise variables with high probability. A case study based on a hierarchical education data illustrates a practical utility of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koenker R, Quantite Regression, Cambridge University Press, New York, 2005.

    Book  Google Scholar 

  2. Yu K, Lu Z, and Stander J, Quantile regression: Applications and current research areas, Journal of the Royal Statistical Society, Series D, 2003, 52: 331–350.

    MathSciNet  Google Scholar 

  3. Fan J and Li R, Variable selection via non-concave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 2001, 96: 1348–1360.

    Article  MathSciNet  Google Scholar 

  4. Tibshirani R J, Regression shrinkage and selection via the Lasso, Journal of the Royal Statistical Society, Ser. B, 1996, 58: 267–288.

    MathSciNet  MATH  Google Scholar 

  5. Tian M Z and Chen G M, Hierarchical linear regression models for conditional quantiles, Science in China Series A: Mathematics, 2006, 49: 11–16.

    MathSciNet  MATH  Google Scholar 

  6. Wu X and Tian M Z, A longitudinal study of the effects of family background factors on mathematics achievements using quantile regression, Acta Mathematicae Applicatae Sinica (English Series), 2008, 24: 85–98.

    Article  MathSciNet  Google Scholar 

  7. Lange N and Laird N M, The effect of covariance structures on variance estimation in balance growth-curve models with random parameters, Journal of the American Statistical Association, 1989, 84: 241–247.

    Article  MathSciNet  Google Scholar 

  8. Akaike H, A new look at the statistical model identification, IEEE Transactions on Automatic Control, 1974, 19: 716–723.

    Article  MathSciNet  Google Scholar 

  9. Schwarz G, Estimating the dimension of a model, Annals of Statistics, 1978, 6: 461–464.

    Article  MathSciNet  Google Scholar 

  10. Rao C R and Wu Y, A strongly consistent procedure for model selection in regression problems, Biometrika, 1989, 76: 369–374.

    Article  MathSciNet  Google Scholar 

  11. Vaida F and Blanchard S, Conditional Akaike information for mixed-effects models, Biometrika, 2005, 92: 351–370.

    Article  MathSciNet  Google Scholar 

  12. Niu F and Pu P, Selecting mixed-effects models based on generalized information criterion, Journal of Multivariate Analysis, 2006, 97: 733–758.

    Article  MathSciNet  Google Scholar 

  13. Wolfinger R D, Covariance structure selection in general mixed models, Communications in Statistics: Simulation and Computation, 1993, 22: 1079–1106.

    Article  Google Scholar 

  14. Diggle P J, Liang K Y, and Zeger S L, Analysis of Longitudinal Data, Oxford University Press, Oxford, 1994.

    MATH  Google Scholar 

  15. Bondell H D, Krishna A, and Ghosh S K, Joint variable selection for fixed and random effects in linear mixed-effects models, Biometrics, 2010, 66: 1069–1077.

    Article  MathSciNet  Google Scholar 

  16. Koenker R, Quantile regression for longitudinal data, Journal of Multivariate Analysis, 2004, 91: 74–89.

    Article  MathSciNet  Google Scholar 

  17. Harville D A, Extension of the Gauss-Markov theorem to include the estimation of random effects, Annals of Statistics, 1976, 4: 384–395.

    Article  MathSciNet  Google Scholar 

  18. Robinson G, That BLUP is a good thing: The estimation of random effects, Statistical Science, 1991, 6: 15–31.

    Article  MathSciNet  Google Scholar 

  19. Henderson C, Estimation of genetic parameters (Abstract), Annals of Mathematical Statistics, 1950, 21: 309–310.

    Google Scholar 

  20. Goldberger A, Best linear unbiased prediction in the generalized linear regression model, Journal of the American Statistical Association, 1962, 57: 369–375.

    Article  MathSciNet  Google Scholar 

  21. Rao C R, Linear Statistical Inference and Its Applications, Wiley, New York, 1973.

    Book  Google Scholar 

  22. Koenker R and Bassett G, Regression quantiles, Econometrica, 1978, 46: 33–50.

    Article  MathSciNet  Google Scholar 

  23. Li Y and Zhu J, L1-norm quantile regressions, Journal of Computational and Graphical Statistics, 2008, 17: 1–23.

    Article  MathSciNet  Google Scholar 

  24. Rockafellar R T, Convex Analysis (Princeton Landmarks in Mathematics and Physics), Princeton University Press, Princeton, New Jersey, 1997.

    Google Scholar 

  25. Schwarz G, Estimating the dimension of a model, Annals of Statistics, 1978, 6: 461–464.

    Article  MathSciNet  Google Scholar 

  26. Koenker R, Ng P, and Portnoy S, Quantile smoothing splines, Biometrika, 1994, 81: 673–680.

    Article  MathSciNet  Google Scholar 

  27. Yuan M, GACV for quantile smoothing splines, Computational Statistics and Data Analysis, 2006, 5: 813–829.

    Article  MathSciNet  Google Scholar 

  28. Knight K, Limiting distribution for L1 regression estimators under general conditions, Annals of Statistics, 1998, 26: 755–770.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youxi Luo.

Additional information

This research was supported by the National Social Science Fund under Grant No. 17BJY210.

This paper was recommended for publication by Editor SUN Liuquan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, Y. & Luo, Y. Double Penalized Quantile Regression for the Linear Mixed Effects Model. J Syst Sci Complex 33, 2080–2102 (2020). https://doi.org/10.1007/s11424-020-9065-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-9065-4

Keywords

Navigation