Skip to main content
Log in

Model-Based Network Scheduling and Control for Systems over the IEEE 802.15.4 Network

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

The scheduling and control of a class of wireless networked control system is investigated, whose control loop is closed via a shared IEEE 802.15.4 wireless network. By using a gain scheduler within the packet-based control framework and fitting the delay-dependent gains into a time-delay system model, a less conservative self-triggered approach is proposed to determine the sampling update, which consequently enables the design of two network scheduling algorithms to reduce the communication usage. Numerical and TrueTime based examples illustrate the effectiveness of the proposed approach in the sense that it reduces greatly the communication usage while maintaining satisfactory control performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Azaza M, Tanougast C, Fabrizio E, et al., Smart greenhouse fuzzy logic based control system enhanced with wireless data monitoring, ISA Trans., 2016, 61: 297–307.

    Article  Google Scholar 

  2. Tofighi S, Torabi S A, and Mansouri S A, Humanitarian logistics network design under mixed uncertainty, Eur. J. Oper. Res., 2016, 250(1): 239–250.

    Article  MathSciNet  Google Scholar 

  3. Uddin F, Energy-aware optimal data aggregation in smart grid wireless communication networks, IEEE Transactions on Green Communications and Networking, 2017, 1(3): 358–371.

    Article  Google Scholar 

  4. Li Q, Zhang B, Cui L, et al., Epidemics on small worlds of tree-based wireless sensor networks, Journal of Systems Science and Complexity, 2014, 27(6): 1095–1120.

    Article  MathSciNet  Google Scholar 

  5. Al Dabbagh A W and Chen T, Design considerations for wireless networked control systems, IEEE Trans. Ind. Electron., 2016, 63(9): 5547–5557.

    Article  Google Scholar 

  6. Ma C Q, Li T, and Zhang J F, Consensus control for leader-following multi-agent systems with measurement noises, Journal of Systems Science and Complexity, 2010, 23(1): 35–49.

    Article  MathSciNet  Google Scholar 

  7. Ma C Q, Li T, and Zhang J F, On formability of linear continuous-time multi-agent systems, Journal of Systems Science and Complexity, 2012, 25(1): 13–29.

    Article  MathSciNet  Google Scholar 

  8. Irene M, Carlo G, Nicola M, et al., A complex systems science perspective on wireless networks, Journal of Systems Science and Complexity, 2016, 29(4): 1034–1056.

    Article  MathSciNet  Google Scholar 

  9. Park P, Ergen S C, Fischione C, et al., Wireless network design for control systems: A survey, IEEE Commun. Surv. Tutorials, 2018, 20(2): 978–1013.

    Article  Google Scholar 

  10. Gatsis K, Pajic M, Ribeiro A, et al., Opportunistic control over shared wireless channels, IEEE Trans. Autom. Control, 2015, 60(12): 3140–3155.

    Article  MathSciNet  Google Scholar 

  11. Choi K W and Kim D I, Stochastic optimal control for wireless powered communication networks, IEEE Trans. Wireless Commun., 2016, 15(1): 686–698.

    Article  Google Scholar 

  12. Heemels W P M H, Teel A R, van de Wouw N, et al., Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance, IEEE Trans. Autom. Control, 2010, 55(8): 1781–1796.

    Article  MathSciNet  Google Scholar 

  13. Wang H, Liu J, and Zhang Y, New results on eigenvalue distribution and controller design for time delay systems, IEEE Trans. Autom. Control, 2017, 62(6): 2886–2901.

    Article  MathSciNet  Google Scholar 

  14. Araújo J, Mazo M, Anta A, et al., System architectures, protocols and algorithms for aperiodic wireless control systems, IEEE Trans. Ind. Inf., 2014, 10(1): 175–184.

    Article  Google Scholar 

  15. Saifullah A, Gunatilaka D, Tiwari P, et al., Schedulability analysis under graph routing in WirelessHART networks, IEEE Real-Time Systems Symposium, San Antonio, 2015, 165–174.

  16. Wu C, Gunatilaka D, Saifullah A, et al., Maximizing network lifetime of WirelessHART networks under graph routing, IEEE First International Conference on Internet-of-Things Design and Implementation (IoTDI), Berlin, 2015, 176–186.

  17. Anwar M, Xia Y, and Zhan Y, TDMA-Based IEEE 802.15.4 for low-latency deterministic control applications, IEEE Trans. Ind. Inf., 2016, 12(1): 338–347.

    Google Scholar 

  18. Tramarin F, Vitturi S, Luvisotto M, et al., On the use of IEEE 802.11n for industrial communications, IEEE Trans. Ind. Inf., 2016, 12(5): 1877–1886.

    Article  Google Scholar 

  19. Seno L, Cena G, Scanzio S, et al., Enhancing communication determinism in Wi-Fi networks for soft real-time industrial applications, IEEE Trans. Ind. Inf., 2017, 13(2): 866–876.

    Article  Google Scholar 

  20. Peng C, Yue D, and Fei M R, A higher energy-efficient sampling scheme for networked control systems over IEEE 802.15.4 wireless networks, IEEE Trans. Ind. Inf., 2016, 12(5): 1766–1774.

    Article  Google Scholar 

  21. Adelantado F, Vilajosana X, Tuset P P, et al., Understanding the limits of LoRaWAN, IEEE Commun. Mag., 2017, 55(9): 34–40.

    Article  Google Scholar 

  22. Tiberi U, Fischione C, Johansson K H, et al., Energy-efficient sampling of networked control systems over IEEE 802.15.4 wireless networks, Automatica, 2013, 49(3): 712–724.

    Article  MathSciNet  Google Scholar 

  23. Sui T, You K, and Fu M, Optimal sensor scheduling for state estimation over lossy channel, IET Control Theory Appl., 2015, 9(16): 2458–2465.

    Article  MathSciNet  Google Scholar 

  24. Henriksson E, Quevedo D E, Peters E G W, et al., Multiple-loop self-triggered model predictive control for network scheduling and control, IEEE Trans. Control Syst. Technol., 2015, 23(6): 2167–2181.

    Article  Google Scholar 

  25. Peters E G W, Quevedo D E, and Fu M, Controller and scheduler codesign for feedback control over IEEE 802.15.4 networks, IEEE Trans. Control Syst. Technol., 2016, 24(6): 2016–2030.

    Article  Google Scholar 

  26. Wu B, Lemmon M D, and Lin H, Formal methods for stability analysis of networked control systems with IEEE 802.15.4 protocol, IEEE Trans. Control Syst. Technol., 2017, 26(5): 1–11.

    Google Scholar 

  27. Alderete C, Le Gall G, Marquet A, et al., Wireless network for in-car communication, International Conference on Ad-Hoc Networks and Wireless, 2018, 138–144.

  28. Silva L E, Santos D, and Osinski C, Wireless industrial networks under interference conditions based on ieee 802.15. 4, 13th IEEE International Conference on Industry Applications (INDUSCON), 2018, 169–173.

  29. IEEE standard for low-rate wireless networks, IEEE Std 802154-2015 (Revision of IEEE Std 802154-2011), 2016, 1–709.

  30. Maass A and Ne D, Stabilization of non-linear networked control systems closed over a lossy wirelesshart network, IEEE Control Systems Letters, 2019, 3(4): 996–1001.

    Article  Google Scholar 

  31. Park B, Nah J, Choi Y J, et al., Transmission scheduling schemes of industrial wireless sensors for heterogeneous multiple control systems, Sensors, 2018, 18(12): 4284.

    Article  Google Scholar 

  32. Zhao Y, Kim J, and Liu G, Offline model predictive control-based gain scheduling for networked control systems, IET Control Theory Appl., 2012, 6(16): 2585–2591.

    Article  MathSciNet  Google Scholar 

  33. Koubaa A, Alves M, and Tovar E, IEEE 802.15.4 for wireless sensor networks: A technical overview, CISTER-Res. Center Real-Time Embedded Comput. Syst., Porto, Portugal, Tech. Rep., 2005, Report No. TR-050702.

  34. Buratti C, Performance analysis of IEEE 802.15.4 beacon-enabled mode, IEEE Trans. Veh. Technol., 2010, 59(4): 2031–2045.

    Article  Google Scholar 

  35. Ramachandran I and Roy S, Clear channel assessment in energyconstrained wideband wireless networks, IEEE Wireless Commun, 2007, 14(3): 70–78.

    Article  Google Scholar 

  36. Bougard B, Catthoor F, Daly D C, et al., Energy efficiency of the IEEE 802.15.4 standard in dense wireless microsensor networks: Modeling and improvement perspectives, IEEE Computer Society, 2005, 1: 196–201.

    Google Scholar 

  37. Zhao Y B, Liu G P, and Rees D, Design of a packet-based control framework for networked control systems, IEEE Trans. Control Syst. Technol., 2009, 17(4): 859–865.

    Article  Google Scholar 

  38. Jiang Z P and Wang Y, Input-to-state stability for discrete-time nonlinear systems, Automatica, 2001, 37(6): 857–869.

    Article  MathSciNet  Google Scholar 

  39. Eqtami A, Dimarogonas D V, and Kyriakopoulos K J, Event-triggered control for discrete-time systems, Proceedings of the 2010 American Control Conference, Baltimore, 2010, 4719–4724.

  40. Boughanmi N, Song Y Q, and Rondeau E, Online adaptation of the IEEE 802.15.4 parameters for wireless networked control systems, IFAC Proceedings Volumes, 2009, 42(3): 56–63.

    Article  Google Scholar 

  41. Zhao Y B, Liu G P, and Rees D, Packet-based deadband control for internet-based networked control systems, IEEE Trans. Control Syst. Technol., 2010, 18(5): 1057–1067.

    Article  Google Scholar 

  42. Moon Y S, Park P, Kwon W H, et al., Delay-dependent robust stabilization of uncertain state-delayed systems, Int. J. Control, 2001, 74(14): 1447–1455.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunbo Zhao, Deheng Xu or Jiangtao He.

Additional information

This paper was supported by the National Natural Science Foundation of China under Grant Nos. 61673350, 61725304, 61673361, the Thousand Talents Plan of China and Zhejiang, the Youth Top-Notch Talent Support Program, and in part by the Youth Yangtze River Scholar.

This paper was recommended for publication by Editor SUN Jian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Xu, D., He, J. et al. Model-Based Network Scheduling and Control for Systems over the IEEE 802.15.4 Network. J Syst Sci Complex 34, 281–297 (2021). https://doi.org/10.1007/s11424-020-9081-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-9081-4

Keywords

Navigation