Skip to main content
Log in

A Kind of Equivalence of Three Nonlinear Scalarization Functions in Vector Optimization

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In this paper, by the notions of base functionals and augmented dual cones, the authors indicate firstly that the norms, Gerstewitz functionals and oriented distance functions have common characteristics with base functionals. After that, the equivalence of these three sublinear functions on the ordering cone is established by using the structures of augmented dual cones under the assumption that it has a bounded base. However, the authors show that two superlinear functions do not have similar relations with the norms ahead. More generally, the equivalence of three sublinear functions outside the negative cone has also been obtained in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jahn J, A characterization of properly minimal elements of a set, SIAM J. Control Optim., 1985, 23(5): 649–656.

    Article  MathSciNet  Google Scholar 

  2. Khanh P Q, Optimality conditions via norm scalarization in vector optimization, SIAM J. Control Optim., 1993, 31(3): 646–658.

    Article  MathSciNet  Google Scholar 

  3. Kasimbeyli R, A nonlinear cone separation theorem and scalarization in nonconvex vector optimization, SIAM J. Optim., 2010, 20(3): 1591–1619.

    Article  MathSciNet  Google Scholar 

  4. Gerstewitz C H and Iwanow E, Dualität für nichtkonvexe vektoroptimierungsprobleme, Wissensch Zeitschr Tech., 1985, 31: 61–81.

    MATH  Google Scholar 

  5. Göpfert A, Riahi H, Tammer C, et al., Variational Methods in Partially Ordered Spaces, Springer, New York, 2003.

    MATH  Google Scholar 

  6. Chen G Y, Huang X X, and Yang X Q, Vector Optimization — Set-Valued and Variational Analysis, Springer-Verlag, Berlin, 2005.

    MATH  Google Scholar 

  7. Luc D T and Raţiu A, Vector Optimization: Basic Concepts and Solution Methods, Eds. by Al-Mezel S A R, Al-Solamy F R M, and Ansari Q H, Fixed Point Theory, Variational Analysis and Optimization, CRC Press, Taylor & Francis Group, Boca Raton, 2014.

    Google Scholar 

  8. Hiriart-Urruty J B, Tangent cones, generalized gradients and mathematical programming in Banach spaces, Math. Oper. Res., 1979, 4(1): 79–97.

    Article  MathSciNet  Google Scholar 

  9. Zaffaroni A, Degrees of efficiency and degrees of minimality, SIAM J. Control Optim., 2003, 42(3): 1071–1086.

    Article  MathSciNet  Google Scholar 

  10. Gao Y, Yang X M, and Teo K L, Optimality conditions for approximate solutions of vector optimization problems, J. Indu. Mana. Optim, 2011, 7(2): 483–496.

    MathSciNet  MATH  Google Scholar 

  11. Gutiérrez C, Jiménez B, and Novo V, Optimality conditions for quasi-solutions of vector optimization problems, J. Optim. Theory Appl., 2015, 167(3): 796–820.

    Article  MathSciNet  Google Scholar 

  12. Zhou Z A and Yang X M, Optimality conditions of generalized subconvexlike set-valued optimization problems based on the quasi-relative interior, J. Optim. Theory Appl., 2011, 150(2): 327–340.

    Article  MathSciNet  Google Scholar 

  13. Zhou Z A, Chen W, and Yang X M, Scalarizations and optimality of constrained set-valued optimization using improvement sets and image space analysis, J. Optim. Theory Appl., 2019, 183(3): 944–962.

    Article  MathSciNet  Google Scholar 

  14. Farajzadeh A, Lee B S, and Plubteing S, On generalized quasi-vector equilibrium problems via scalarization method, J. Optim. Theory Appl., 2016, 168(2): 584–599.

    Article  MathSciNet  Google Scholar 

  15. Boţ R I and Csetnek E R, Error bound results for convex inequality systems via conjugate duality, Optim. Lett., 2012, 20(2): 296–309.

    MathSciNet  MATH  Google Scholar 

  16. Sach P H and Tuan L A, New scalarizing approach to the stability analysis in parametric generalized Ky Fan inequality problems, J. Optim. Theory Appl., 2013, 157(2): 347–364.

    Article  MathSciNet  Google Scholar 

  17. Chatterjee P and Lalitha C S, Scalarization of Levitin-Polyak well-posedness in vector optimization using weak efficiency, Optim. Lett., 2015, 9(2): 329–343.

    Article  MathSciNet  Google Scholar 

  18. Zangenehmehr P, Farajzadeh A P, and Vaezpour S M, On fixed point theorems for monotone increasing vector valued mappings via scalarizing, Positivity, 2015, 19(2): 333–340.

    Article  MathSciNet  Google Scholar 

  19. Ha T X D, The Ekeland variational principle for Henig proper minimizers and super minimizers, J. Math. Anal. Appt., 2010, 364(1): 156–170.

    Article  MathSciNet  Google Scholar 

  20. Kuroiwa D, Optimality conditions for approximate solutions of vector optimization problems, Proceedings of the International Conference on Nonlinear Analysis and Convex Analysis (ed. by World Scientific), NJ, 1999.

  21. Araya Y, Four types of nonlinear scalarizations and some applications in set optimization, Nonlinear Analysis: Theory, Methods & Applications, 2012, 75(9): 3821–3835.

    Article  MathSciNet  Google Scholar 

  22. Xu Y D and Li S J, A new nonlinear scalarization function and applications, Optimization, 2016, 65(1): 207–231.

    Article  MathSciNet  Google Scholar 

  23. Han Y, Nonlinear scalarizing functions in set optimization problems, Optimization, 2019, 68(9): 1685–1718.

    Article  MathSciNet  Google Scholar 

  24. Jiménez B, Novo V, and Vílchez A, Six set scalarizations based on the oriented distance: Properties and application to set optimization, Optimization, 2020, 69(3): 437–470.

    Article  MathSciNet  Google Scholar 

  25. Durea M and Tammer C, Fuzzy necessary optimality conditions for vector optimization problems, Optimization, 2009, 58(4): 449–467.

    Article  MathSciNet  Google Scholar 

  26. Chen C R, Hölder continuity of the unique solution to parametric vector quasiequilibrium problems via nonlinear scalarization, Positivity, 2013, 17(1): 133–150.

    Article  MathSciNet  Google Scholar 

  27. Lu F and Chen C R, Notes on Lipschitz properties of nonlinear scalarization functions with applications, Abstract and Applied Analysis, 2014, (3): 1–10.

  28. Tammer C and Zálinescu C, Lipschitz properties of the scalarization function and applications, Optimization, 2010, 59(2): 305–319.

    Article  MathSciNet  Google Scholar 

  29. Cheng Y H and Fu W T, Strong efficiency in a locally convex space, Math. Meth. Oper. Res., 1999, 50(1): 373–384.

    Article  MathSciNet  Google Scholar 

  30. Zheng X Y, The domination property for efficiency in locally convex spaces, J. Math. Anal. Appl., 1997, 213(1): 455–467.

    Article  MathSciNet  Google Scholar 

  31. Qiu J H, Dual characterization and scalarization for Benson proper efficiency, SIAM J. Optim., 2008, 19(1): 144–162.

    Article  MathSciNet  Google Scholar 

  32. Qiu J H, On solidness of polar cones, J. Optim. Theory Appl., 2001, 109(1): 199–214.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Li or Xinmin Yang.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 11601248, 11431004, 11971084.

This paper was recommended for publication by Editor WANG Shouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Yang, X. A Kind of Equivalence of Three Nonlinear Scalarization Functions in Vector Optimization. J Syst Sci Complex 34, 692–705 (2021). https://doi.org/10.1007/s11424-020-9086-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-9086-z

Keywords

Navigation