Skip to main content
Log in

Functional Multiple-Outcome Model in Application to Multivariate Growth Curves of Infant Data

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Motivated by a medical study that attempts to analyze the relationship between growth curves and other variables and to measure the association among multiple growth curves, the authors develop a functional multiple-outcome model to decompose the total variation of multiple functional outcomes into variation explained by independent variables with time-varying coefficient functions, by latent factors and by noise. The latent factors are the hidden common factors that influence the multiple outcomes and are found through the combined functional principal component analysis approach. Through the coefficients of the latent factors one may further explore the association of the multiple outcomes. This method is applied to the multivariate growth data of infants in a real medical study in Shanghai and produces interpretable results. Convergence rates for the proposed estimates of the varying coefficient and covariance functions of the model are derived under mild conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin H Z, Zhou L, Elashoff R M, et al., Semiparametric latent variable transformation models for multiple mixed outcomes, Statistica Sinica, 2014, 24(2): 833–854.

    MathSciNet  MATH  Google Scholar 

  2. Slud E and Thibaudeau Y, Multi-outcome longitudinal small area estimation — A case study, Statistical Theory and Related Fields, 2019, 3(2): 136–149.

    Article  MathSciNet  Google Scholar 

  3. Zhou L, Lin H Z, Song X Y, et al., Selection of latent variables for multiple mixed-outcome models, Scandinavian Journal of Statistics, 2014, 41(4): 1064–1082.

    Article  MathSciNet  Google Scholar 

  4. Zhou L, Huang J Z, and Carroll R J, Joint modelling of paired sparse functional data using principal components, Biometrika, 2008, 95(3): 601–619.

    Article  MathSciNet  Google Scholar 

  5. Chiou J M and Müller H G, Linear manifold modelling of multivariate functional data, Journal of the Royal Statistical Society, Series B, 2014, 76(3): 605–626.

    Article  MathSciNet  Google Scholar 

  6. Chiou J M and Müller H-G, A pairwise interaction model for multivariate functional and longitudinal data, Biometrika, 2016, 103(2): 377–396.

    Article  MathSciNet  Google Scholar 

  7. Chen K H and Müller H G, Modelling repeated functional observations, Journal of the American Statistical Association, 2012, 107(500): 1599–1609.

    Article  MathSciNet  Google Scholar 

  8. Di C Z, Craniniceanu C M, Caffo B S, et al., Multilevel functional principal component analysis, The Annals of Applied Statistics, 2009, 3(1): 458–488.

    Article  MathSciNet  Google Scholar 

  9. Happ C and Greven S, Multivariate functional principal component analysis for data observed on different (dimensional) domains, Journal of the American Statistical Association, 2018, 113(522): 649–659.

    Article  MathSciNet  Google Scholar 

  10. Greven S, Crainiceanu C M, Caffo B S, et al., Longitudinal functional principal component analysis, Electronic Journal of Statistics, 2010, 4(39): 1022–1054.

    MathSciNet  MATH  Google Scholar 

  11. Li Y H and Hsing T, Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data, Annals of Statistics, 2010, 38(6): 3321–3351.

    Article  MathSciNet  Google Scholar 

  12. Benko M, Härdle W, and Kneip A, Common functional principal compoents, The Annals of Statistics, 2009, 37(1): 1–34.

    Article  MathSciNet  Google Scholar 

  13. Yao F, Müller H G, and Wang J L, Functional data analysis for sparse longitudinal data, Journal of the American Statistical Association, 2005, 100(470): 577–590.

    Article  MathSciNet  Google Scholar 

  14. Yan X Y, Pu X L, Zhou Y C, et al., Convergence rate of principal component analysis with local-linear smoother for functional data under a unified weighing scheme, Statistical Theory and Related Fields, 2020, 4(1): 55–65.

    Article  MathSciNet  Google Scholar 

  15. Cai T T and Hall P, Prediction in functional linear regression, The Annals of Statistics, 2006, 34(5): 2159–2179.

    MathSciNet  MATH  Google Scholar 

  16. Guo W, Functional mixed effects models, Biometrics, 2002, 58(1): 121–128.

    Article  MathSciNet  Google Scholar 

  17. Morris J S and Carroll R J, Wavelet-based functional mixed models, Journal of the Royal Statistical Society, Series B, 2006, 68(2): 179–199.

    Article  MathSciNet  Google Scholar 

  18. Wu Y C, Fan J Q, and Müller H G, Varying-coefficient functional linear regression, Bernoulli, 2010, 16(3): 730–758.

    Article  MathSciNet  Google Scholar 

  19. Yao F, Müller H G, and Wang J L, Functional linear regression analysis for longitudinal data, The Annals of Statistics, 2005, 33(6): 2873–2903.

    Article  MathSciNet  Google Scholar 

  20. Xu Y H, Li Y H, and Nettleton D, Nested hierarchical functional data modeling and inference for the analysis of functional plant phenotypes, Journal of the American Statistical Association, 2018, 113(522): 593–606.

    Article  MathSciNet  Google Scholar 

  21. Ferraty F and Vieu P, Nonparametric Functional Data Ananlysis: Theory and Practice, Springer, New York, 2006.

    MATH  Google Scholar 

  22. Kokoszka P and Reimherr M, Introduction to Functional Data Analysis, Chapman and Hall/CRC, New York, 2017.

    Book  Google Scholar 

  23. Kowal D R, Mattesona D S, and Ruppert D, A bayesian multivariate functional dynamic linear model, Journal of the American Statistical Association, 2017, 112(518): 733–744.

    Article  MathSciNet  Google Scholar 

  24. Zhu H X, Morris J S, Wei F R, et al., Multivariate functional response regression, with application to fluorescence spectroscopy in a cervical pre-cancer study, Computational Statistics and Data Analysis, 2017, 111: 88–101.

    Article  MathSciNet  Google Scholar 

  25. Chiou J M, Yang Y F, and Chen Y T, Multivariate functional linear regression and prediction, Journal of Multivariate Analysis, 2016, 146: 301–312.

    Article  MathSciNet  Google Scholar 

  26. Zhu H T, Li R Z, and Kong L L, Multivariate varying coefficient model for functional responses, The Annals of Statistics, 2012, 40(5): 2634–2666.

    Article  MathSciNet  Google Scholar 

  27. Huang J Z, Wu C O, and Zhou L, Varying-coefficient models and basis function approximations for the analysis of repeated measurements, Biometrika, 2002, 89(1): 111–128.

    Article  MathSciNet  Google Scholar 

  28. Zhang X K and Wang J L, From sparse to dense functional data and beyond, Annals of Statistics, 2016, 44(5): 2281–2321.

    MathSciNet  MATH  Google Scholar 

  29. Besse P and Ramsay J O, Principal components analysis of sampled functions, Psychometrika, 1986, 51(2): 285–311.

    Article  MathSciNet  Google Scholar 

  30. Ramsay J O and Dalzell C J, Some tools for functional data analysis, Journal of the Royal Statistical Society, Series B, 1991, 53(3): 539–572.

    MathSciNet  MATH  Google Scholar 

  31. Ramsay J O and Silverman B W, Functional Data Analysis, Springer, New York, 2005.

    Book  Google Scholar 

  32. Silverman B W, Smoothed functional principal components analysis by choice of norm, The Annals of Statistics, 1996, 24(1): 1–24.

    Article  MathSciNet  Google Scholar 

  33. Chen H and Wang Y, A penalized spline approach to funcitonal mixed effects model analysis, Biometrics, 2011, 67(3): 861–870.

    Article  MathSciNet  Google Scholar 

  34. Chiou J M, Ma Y Y, and Tsai C L, Functional random effect time-varying coefficient model for longitudinal data, Stat., 2012, 1(1): 75–89.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchun Zhou.

Additional information

This paper was supported by the National Natural Science Foundation of China under Grant Nos. 11771146, 11831008, 81530086, 11771145, 11871252, the 111 Project (B14019) and Program of Shanghai Subject Chief Scientist under Grant No. 14XD1401600.

This paper was recommended for publication by Editor LI Qizhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Zhou, Y., Pu, X. et al. Functional Multiple-Outcome Model in Application to Multivariate Growth Curves of Infant Data. J Syst Sci Complex 34, 1555–1577 (2021). https://doi.org/10.1007/s11424-020-9319-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-020-9319-1

Keywords

Navigation