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Abstract Markov Chain Monte Carlo (MCMC) requires to evaluate the full data likelihood at dif-

ferent parameter values iteratively and is often computationally infeasible for large data sets. In this

paper, we propose to approximate the log-likelihood with subsamples taken according to nonuniform

subsampling probabilities, and derive the most likely optimal (MLO) subsampling probabilities for

better approximation. Compared with existing subsampled MCMC algorithm with equal subsampling

probabilities, our MLO subsampled MCMC has a higher estimation efficiency with the same subsam-

pling ratio. We also derive a formula using the asymptotic distribution of the subsampled log-likelihood

to determine the required subsample size in each MCMC iteration for a given level of precision. This

formula is used to develop an adaptive version of the MLO subsampled MCMC algorithm. Numerical

experiments demonstrate that the proposed method outperforms the uniform subsampled MCMC.

Keywords Big Data, MCMC, Metropolis-Hasting Algorithm, Nonuniform Subsampling

1 Introduction

Bayesian methods became popular since 1990s due to the advance of computing technology

and the introduction of powerful sampling algorithm like Markov Chain Monte Carlo (MCMC).

However, posterior sampling through MCMC is computationally demanding, especially with

large data sets. When a data set has a large number of observations, the MCMC method may

take a long time to run because it requires to evaluate the likelihood function in each iteration

on the full data. There are two major approaches to speed up MCMC algorithms. The first

approach utilizes parallel computing; it partitions the data into small pieces and computes sub-

posteriors for each piece in parallel, see [10, 12]. The other approach is to use a subsample of

the data in each MCMC iteration to speed up the algorithm, e.g., [1, 7]. This paper is about

the subsampling approach.
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A standard way to conduct MCMC is to apply the Metropolis-Hastings (MH) algorithm

[4, 9], and we will focus on this algorithm. The MH algorithm requires to evaluate the full data

likelihood at two different values of the parameter in each iteration. We propose to approxi-

mate the full data log-likelihood with weighted log-likelihood calculated from subsamples taken

according to nonuniform subsampling probabilities. The subsampled log-likelihood estimator

is unbiased approximations of the full data log-likelihood. We then derive the most likely op-

timal subsampling probabilities to better approximate the full data log-likelihood. Compared

with existing uniform subsampled MH algorithm [1, 7], our algorithm has a higher estimation

efficiency with the same subsampling ratio or requires a smaller subsample size for the same

level of approximation precision. Another contribution of this paper is that we introduce a

subsample size calculation formula to determine required subsample size adaptively for a given

precision in each MH iteration. Unlike the sample size determination rule used in [1], which

relies on an upper bound of the approximation error, our formula is based on the asymptotic

distribution of the approximation error. As a result, the required subsample sizes are typically

smaller than that required by [1].

The rest of the paper is organized as follows. Section 2 introduces notations for the problem

of interest, the traditional MH algorithm, and the existing uniform subsampled MH algorithm.

Section 3 presents the MLO subsampling probabilities and resultant MH algorithms, one with

a fixed subsample size and the other with adaptive subsample sizes. Section 4 uses numerical

experiments to evaluate our method and draws comparisons with uniform subsampled MCMC

algorithm. Section 5 illustrates the proposed methods on a real data set. Section 6 concludes

with a brief summary of the paper and possible future research topics.

2 Background and related work

Consider a data set with n data points, X = {x1, ..., xn}, for which the underlying dis-

tribution depends on a p dimensional parameter vector θ. Given a value of the param-

eter θ, we assume that the data are conditionally independent with associated likelihood

p(X|θ) =
∏n
i=1 p(xi|θ). In Bayesian approach, θ is assume to be random with a prior dis-

tribution, say p(θ). Bayesian inference relies on the posterior distribution of θ, the conditional

distribution of θ given the data,

π(θ) =
p(X|θ)× p(θ)∫
p(X|θ)× p(θ)dθ

∝ p(θ)
n∏
i=1

p(xi|θ). (1)

Statistical inference often requires to calculate a functional of π(θ) such as the posterior mean,∫
θπ(θ)dθ, which is the Bayes estimator under the squared loss. In most applications, π(θ) has

a complicated expression and the functional is analytically infeasible to find. For this scenario,

one often has to use MCMC methods to generate samples from the posterior distribution for

statistical inference.
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2.1 The standard Metropolis-Hastings algorithm

The MH algorithm is a widely used method to sample approximately from π(θ). This algo-

rithm needs a conditional proposal distribution, say q(.|θ), to generate a candidate parameter

value θ′, and then the posterior density need to be evaluated at θ′ to determine if θ′ is accepted

or rejected as the next step value of the algorithm. In practice, q(.|θ) must be a distribution

from which it is easy to simulate observations. The MH algorithm produces a Markov chain

with the posterior as its equilibrium distribution. Thus, after sufficient number of iterations,

the MH algorithm produces observations from the posterior distribution. For completeness and

ease of discussion, we present the standard MH algorithm in the following Algorithm 1:

Algorithm 1 Metropolis-Hastings algorithm

for k ← 1 to N do

θ ← θk−1

θ′ ∼ q(.|θ)
u ∼ U(0, 1)

α = π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

if α > u then

θk ← θ′ {Accept}
else

θk ← θ {Reject}
end if

Return θk, k = 1, ..., N

end for

2.2 Metropolis-Hastings algorithm with subsampled likelihood

In the standard MH algorithm 1, one has to evaluate π(·) at both θ and θ′ in each iter-

ation. From (1), this requires to evaluate the full data likelihood at each iteration, which is

computationally demanding for large data sets. [1, 7] proposed to approximate the full data

log-likelihood using uniform subsamples to speed up MCMC methods. We briefly discuss the

rationale of this idea here.

The accept-or-reject step in Algorithm 1 is determined by the relative magnitude between

α and u. Note that α > u if and only if

Λn(θ, θ′) ≡ `n(θ′)− `n(θ) >
1

n
log

[
u
p(θ)q(θ′|θ)
p(θ′)q(θ|θ′)

]
, (2)

where

`n(θ) =
1

n

n∑
i=1

log p(xi|θ) (3)

is the full data log-likelihood. In each MH iteration, the major computing burden is to calculate

the full data log-likelihood at θ and θ′. However, since `n(θ) is in a form of average, it can
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be well approximated by using a subsample, and that is the basic idea of subsampled MH

algorithm to speed up MCMC.

In [1, 7], the authors proposed to take uniform subsamples to approximate the full data

log-likelihood difference Λn(θ, θ′). Let x∗1, · · · , x∗r be random sample of size r from the full

data taken without replacement according to uniform subsampling probabilities. Instead of

computing Λn(θ, θ′) on the full data set, they proposed to approximate Λn(θ, θ′) by

Λ∗ur(θ, θ
′) =

1

r

r∑
i=1

log p(x∗i |θ′)−
1

r

r∑
i=1

log p(x∗i |θ). (4)

To determine the required subsample sizes, [7] put the accept-or-reject step of MH in

a framework of hypothesis testing and treated the inequality in (2) as the null hypothesis.

Given the full data, θ, θ′, and u, if we write µ = 1
n

∑n
i=1(log p(xi|θ′) − log p(xi|θ′)) and

µ0 = 1
n log

[
u p(θ)q(θ′|θ)
p(θ′)q(θ|θ′)

]
, then to determine if the inequality in (2) is true or not, it is equiv-

alent to test H0 : µ > µ0 v.s. Ha : µ ≤ µ0. This is just a hypothesis test for the mean, so

the random subsample mean, Λ∗ur(θ, θ
′), can be used to form a test statistic. [7]’s subsample

size determination rule is to take enough subsample so that the p-value of the hypothesis test

H0 : µ = µ0 v.s. Ha : µ 6= µ0 is smaller than a threshold.

For a given level of precision, [1] proposed to determine the required subsamples size by

using the following concentration inequality to bound the error of Λ∗r(θ, θ
′) in approximating

Λn(θ, θ′):

P (|Λ∗r(θ, θ′)− Λn(θ, θ′)| ≤ cr) ≥ 1− δr, (5)

for δr, where cr = Cθ,θ′
√

2(1−f∗r ) log(2/δr)
r , Cθ,θ′ = max1≤i≤n | log p(xi|θ′) − log p(xi|θ)|, and

f∗r = r−1
n is approximately the fraction of used samples. Based on the inequality (5), they

developed an adaptive procedure to determine the required subsample size in each MH iteration

as

T = n ∧ inf{t ≥ 1 : |Λ∗r(θ, θ′)− Λn(θ, θ′)| < cr}, (6)

where a ∧ b denotes the minimum of a and b. Using this adaptive subsample size (6) and

subsampled log-likelihood in (4), they proposed an adaptive subsampled MH algorithm. [8]

pointed out that this adaptive sample size determination rule may require large subsample

sizes for most MH iterations because the upper bounded cr may not be sharp enough. In

addition, the upper bounded cr depends on the log-likelihood for the full data, which may

require significantly additional computing time in each MH iteration.

The aforementioned work uses uniform subsampling to take subsamples, i.e., all data points

have equal probabilities to be included in a subsample, and the focus of the investigations

was on the decision rule of subsample sizes. This paper focuses on nonuniform subsampling

and shows that it is more efficiency than uniform subsampling, i.e., it produces more accurate

approximation with the same subsample size.
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3 MLO Subsampled MH algorithm

The key to success of the subsampled MH is to approximate the full data log-likelihood

`n(θ) accurately at different values, θ and θ′, in each iteration using a subsample. To improve

the approximation efficiency, we propose to use nonuniform subsampling probabilities. In this

paper, we recommend using sampling with replacement because it has a higher computational

efficiency. In addition, if the sampling ratio (r/n) is small, then the probability to have du-

plicates in the subsample is small and thus sampling with replacement has similar estimation

efficiency as sampling without replacement.

Let η1, ..., ηn be nonuniform subsampling probabilities such that
∑n
i=1 ηi = 1. For a subsam-

ple, x∗1, ..., x
∗
r , taken randomly according to ηi’s with replacement, the subsample approximation

of `n(θ) is

`∗r(θ) =
1

r

r∑
i=1

1

nη∗i
log{p(x∗i |θ)}. (7)

Direct calculations show that

E∗{`∗r(θ)} = `n(θ), and V∗{`∗r(θ)} =
1

rn2

n∑
i=1

1

ηi
log2{p(xi|θ)} −

1

r
`2n(θ), (8)

where the expectation and variance are taken with respect to the randomness of subsampling

only.

Equation (8) shows that `∗r(θ) is an unbiased estimator of `n(θ). Thus, to better approximate

`n(θ), one can choose ηi so that the variance V∗{`∗r(θ)} is minimized, that is to find ηopt =

(ηopt1 , ..., ηoptn ) such that

ηopt = arg min
η

V∗{`∗r(θ)}. (9)

Note that

n∑
i=1

1

ηi
log2{p(xi|θ)} =

n∑
i=1

ηi ×
n∑
i=1

1

ηi
log2{p(xi|θ)} ≥

[ n∑
i=1

∣∣ log{p(xi|θ)}
∣∣]2,

where the second last step is from the Cauchy-Schwarz inequality and the equality holds if and

only if when ηi ∝
∣∣ log{p(xi|θ̂)}

∣∣. Thus, the optimal subsampling probabilities that minimize

the variance V∗{`∗r(θ)} satisfy

ηopti =
| log{p(xi|θ)}|∑n
j=1 | log{p(xj |θ)}|

i = 1, . . . , n. (10)

Here, ηopt depends on the value of θ, and we use ηopt(θ) to emphasize this fact when

necessary. If in each MH iteration we calculate ηopt for both θ and θ′, then the computational

time is not faster than the full data MH algorithm and there is no computational benefit for

using this subsampling plan. To address this issue, we propose to calculate ηopt(θ) at a fixed
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value of θ instead of calculating it iteratively. We propose to use the maximum likelihood

estimator (MLE)

θ̂ = arg max
θ

1

n

n∑
i=1

log{p(xi|θ)}, (11)

namely, to use ηopt(θ̂) for subsampling in each MH iteration. Heuristically, this is trying to

minimize the variance V∗{`∗r(θ)} at the value of θ that are the most likely to occur according

to the data. We call this subsampling design the most likely optimal (MLO) subsampling.

A nice property of the MLO subsampling probability ηopt is that it depends on a fixed value

of θ for a given data set. Thus, we can calculate ηopti before running subsampled MH algorithm

and there is no need to calculate them iteratively. In each iteration of the MH algorithm, use

the subsample taken according to ηopti to approximate `n(θ) and `n(θ′), which are then used to

approximate Λn(θ, θ′). We present the procedure in the following algorithm.

Algorithm 2 Most likely optimal subsampled Metropolis-Hastings algorithm

for k ← 1 to N do

θ ← θk−1

θ′ ∼ q(.|θ)
u ∼ U(0, 1)

ψ(u, θ, θ′)← 1
n log

(
u p(θ)q(θ′|θ)
p(θ′)q(θ|θ′)

)
x∗1, · · · , x∗r

ηopt

∼ X {Subsample with replacement according to ηopt1 , ..., ηoptn }

`∗r(θ)← 1
r

∑r
i=1

log{p(x∗i |θ)}
nηopt∗
i

`∗r(θ
′)← 1

r

∑r
i=1

log{p(x∗i |θ
′)}

nηopt∗
i

Λ∗(θ, θ′)← `∗r(θ
′)− `∗r(θ)

if Λ∗(θ, θ′) > ψ(u, θ, θ′) then

θk ← θ′ {Accept}
else

θk ← θ {Reject}
end if

Return θk, k = 1, ..., N

end for

The performance of Algorithm 2 critically depends on the quality of Λ∗(θ, θ′) in approxi-

mating Λn(θ, θ′), which is affected by the subsample size r. It is clear that Λ∗(θ, θ′) is unbiased,

i.e., E∗{Λ∗(θ, θ′)} = Λn(θ, θ′). Thus its quality is mainly measured by its variance, which is

V∗{Λ∗(θ, θ′)} =
1

r

1

n

n∑
i=1

[
log{p(xi|θ)} − log{p(xi|θ′)}

]2
| log{p(xi|θ̂)}|

× 1

n

n∑
i=1

| log{p(xi|θ̂)}|. (12)

Under mild conditions, the Lindeberg-Feller central limit theorem [Section 2.8 of 11] applies for
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the conditional distribution of Λ∗(θ, θ′) given X, which indicates that, conditional on the full

data X,

Λ∗(θ, θ′)− Λn(θ, θ′)
a∼ N

[
0, V∗{Λ∗(θ, θ′)}

]
, (13)

where
a∼ means the distribution of the quantity on the left-hand-side is asymptotically the same

as the distribution on the right-hand-side. This is useful to determine the required subsample

size r for a given probability and bound of approximation error. For any given cr and error

probability δr, we can approximate the required subsample size by solving

1− δr = P{|Λ∗(θ, θ′)− Λn(θ, θ′)| > cr} ≈ P
{√

V∗{Λ∗(θ, θ′)}|Z| > cr
}
, (14)

where Z is a standard normal random variable. Solving (14) gives us the approximated sample

size as

ra =
(Zδ/2
cr

)2 1

n

n∑
i=1

[
log{p(xi|θ)} − log{p(xi|θ′)}

]2
| log{p(xi|θ̂)}|

× 1

n

n∑
i=1

| log{p(xi|θ̂)}|. (15)

Of course, direct use of equation (15) is not computationally appealing as it requires to

evaluate the likelihood on the full data. We can use a pilot subsample to estimate ra and then

decide if we need additional data to achieve the pre-specified level of precision. An unbiased

estimator of ra based on a subsample x∗1, ..., x
∗
r is

ra∗ =
(Zδ/2
cr

)2 1

rn2

r∑
i=1

[
log{p(x∗i |θ)} − log{p(x∗i |θ′)}

]2
(ηopt∗i )2

. (16)

Based on (16), we propose an adaptive version of the most likely optimal subsampled MH

algorithm presented below.
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Algorithm 3 Adaptive most likely optimal subsampled MH algorithm

for k ← 1 to N do

θ ← θk−1

θ′ ∼ q(.|θ)
u ∼ U(0, 1)

ψ(u, θ, θ′)← 1
n log

(
u p(θ)q(θ′|θ)
p(θ′)q(θ|θ′)

)
x∗1, · · · , x∗r

ηopt

∼ X {Subsample with replacement according to ηopt1 , ..., ηoptn }

`∗r(θ)← 1
r

∑r
i=1

log{p(x∗i |θ)}
nηopt∗
i

`∗r(θ
′)← 1

r

∑r
i=1

log{p(x∗i |θ
′)}

nηopt∗
i

Λ∗(θ, θ′)← `∗r(θ
′)− `∗r(θ)

cr = |Λ∗(θ, θ′)− ψ(u, θ, θ′)|/2

ra∗ ←
(
Zδ/2
cr

)2
1
rn2

∑r
i=1

[
log{p(x∗i |θ)}−log{p(x

∗
i |θ
′)}
]2

(ηopt∗
i )2

if r < ra∗ ∧ rmax then

x∗r+1, · · · , x∗ra∗
ηopt

∼ X {Take additional subsample}

`∗r(θ)← 1
ra∗

∑ra∗

i=r+1
log{p(x∗i |θ)}
nηopt∗
i

+ r
ra∗ `

∗
r(θ)

`∗r(θ
′)← 1

ra∗

∑ra∗

i=r+1
log{p(x∗i |θ

′)}
nηopt∗
i

+ r
ra∗ `

∗
r(θ
′)

Λ∗(θ, θ′)← `∗r(θ
′)− `∗r(θ)

end if

if Λ∗(θ, θ′) > ψ(u, θ, θ′) then

θk ← θ′ {Accept}
else

θk ← θ {Reject}
end if

Return θk, k = 1, ..., N

end for

4 Simulation

In this section, we use numerical experiments to evaluate the performance of the proposed

MLO subsampled MH algorithm, and compare it with the uniform subsampled MH algorithm.

We repeat the simulation for B = 100 times and calculate the empirical bias, standard

deviation, and mean squared error as

Bias =
1

B

B∑
b=1

θ̂b − θ, SD =
1

B − 1

B∑
b=1

(θ̂b − θ̂), and MSE =
1

B

B∑
b=1

(θ̂b − θ)2,

respectively, where θ̂b is the estimate in the bth repetition of the simulation, θ is the true
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parameter, and θ̂ is the mean of the estimates from the B repetitions of the simulation.

4.1 Example I: Gaussian distribution

We generate 1000 observations from N(µ, 1) with true µ = 1, and choose the prior as

µ ∼ N(0, 32) where 32 is the variance of the prior. We run N =3,000 iterations of subsampled

MH algorithms and throw away the samples from the first 1,000 iterations as burn-in and use

the sample mean for the rest of the sample to estimate µ.

In addition to using the MLE of µ to calculate the subsampling probability η, we investigate

the effect of using different values of µ. We first considered µ = 1, which is the true value of

the parameter in generating data sets. In addition, we consider some other values of µ: µ =

-10, -5, -2, 1, 2, 5 and 10.

Table 1 presents the results of empirical mean squared error, in which η∗µ̂ and ηtµ̂ are the

subsampling probabilities calculated using the MLE from the data and using the true parameter,

respectively. It is seen that η∗µ̂ and ηtµ=1 (based on the true value of µ in generating the data)

have very similar performances, and they both outperform other choices of η. Note that the

true value µ = 1 is always unknown in practice, but using the practical η∗µ̂ produces comparable

results. Compared with other choices of µ, the advantage of η∗µ̂ is more significant for smaller

values of the subsample size r.

Table 1: Empirical MSE (×103) with different weights for estimating the mean parameter in a

Gaussian distribution
η∗
µ̂ ηtµ=1 ηµ=−10 ηµ=−5 ηµ=−2 ηµ=2 ηµ=5 ηµ=10

r = 10 1.53 1.51 1.96 3.22 10.1 3.06 6.43 2.14

r = 20 1.46 1.34 1.41 2.06 3.86 1.76 2.61 1.56

r = 50 1.23 1.25 1.33 1.33 1.78 1.31 1.46 1.36

Similar to the case of the mean parameter, we implemented the nonuniform subsampling

method in estimating the precision parameter (the inverse of the variance) of the normal dis-

tribution. We generate 1000 observations from N(0, τ) with τ = 1, and choose the prior as

τ ∼ Gamma(0.01, 0.01). Here τ is the precision parameter. We run 3,000 iterations of subsam-

pled MH algorithms and throw away the samples from the first 1,000 iterations as burn-in. We

consider using different values of τ to calculate the subsampling probability, with the choices

of the true parameter τ = 1, and τ = 0.1, 0.2, 0.5, 2, 5, and 10. Table 2 presents the results on

empirical MSE. Again, η∗τ̂ performs similarly to ηtτ=1 and it is better than other choices of τ .

Table 2: Empirical MSE (×103) with different weights for estimating the precision parameter

in a Gaussian distribution.
η∗
τ̂ ηtτ=1 ητ=0.1 ητ=0.2 ητ=0.5 ητ=2 ητ=5 ητ=10

r = 10 2.16 2.40 5.19 3.97 2.86 2.69 48.7 100

r = 20 2.16 2.02 3.18 2.40 2.22 2.42 18.5 62.2

r = 50 1.93 1.97 2.23 2.24 2.02 1.94 4.64 23.9
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We also compare the performance of our method with the uniform subsampled MH algo-

rithm. Table 3 shows the empirical results, where the proposed method are significantly better

than the uniform subsampling method. In this case, the bias is not negligible for the uniform

subsampling method, while the proposed method has very small bias.

Table 3: Empirical bias, standard deviation, and root mean square errors for estimating the

precision of a Gaussian distribution. All number are multiplied by ×103 for better presentation.

MLO Uniform subsampling

Subsample Size Bias SD
√

MSE Bias SD
√

MSE

r = 10 -2.86 48.2 48.1 63.0 51.8 81.4

r = 20 -3.03 45.2 45.2 29.2 50.8 58.4

r = 50 -1.57 45.5 45.5 9.91 44.0 44.8

To have a closer look at the difference between posterior samples from the MLO subsampled

MH algorithm and those from the uniform subsampling MH algorithm, we plot histograms

using 2,000 posterior samples from each algorithm in Figure 1. We see that posterior samples

from the MLO subsampled MH algorithm have smaller variances than those from the uniform

subsampled MH algorithm. The mean of the MLO subsampled posterior samples is also closer to

the true posterior mean (the vertical dotted line) compared with that of the uniform subsampled

posterior samples.
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Figure 1: Histogram of posterior samples from subsampled MH algorithms with r = 10, 20,

and 50, respectively. The red color is for the MLO subsamples and the green color is for the

uniform subsamples.

4.2 Example II: logistic regression

In this example, we compare our MLO subsampled MH algorithm with the uniform subsam-

pled MH algorithm in the context of logistic regression. In each repetition of the simulation,

we generate n =100,000 data points from a logistic regression model. Specifically, for each

repetition, data points xi = (yi, zi), i = 1, ..., 100, 000, are generated in this way: generate

zi = (z1i, z2i) so that z1i and z2i are independent and identically distributed from the stan-
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dard normal distribution; generate yi independently from Bernoulli distributions Bernoulli(γi),

where γi = exp(z1iθ1+z2iθ2)
1+exp(z1iθ1+z2iθ2)

, and the true parameters are θ1 = 1 and θ2 = 0.5.

For the two parameters θ1 and θ2, we use posterior means to estimate them, which are

Bayes estimators under the squared loss. The prior distributions of θ1 and θ2 are both assumed

to be Gaussian distribution with mean 0 and variance 10. We use subsampled MH algorithms

to draw samples from the posterior to approximate the posterior means. For the proposal

distribution q(θ′|θ), we set it to be N(θ, 1) which corresponds to the random walk MH algorithm

[6]. For each repetition of the simulation, we run 30,000 MH iterations and throw away the

first 10,000 samples as burn-in and store one sample for every 20 MH iterations in order to

reduce autocorrelation. We repeat the simulation for 100 times, and calculate the empirical

biases and standard errors for the posterior means. Results are reported in Table 4. For the

adaptive algorithm in Algorithm 3, the initial subsample size is r = 100 and the upper limit

of subsample size rmax = 5, 000. The mean subsample percentage of the adaptive algorithm in

Algorithm 3 is about 1.68 %, and the median percentage is about 0.96 %.

Table 4: Empirical bias ×103 and empirical standard deviation ×103 for estimating parameters

in logistic regression.

r/n method θ1 θ2

Bias SD Bias SD

0.001 uniform 60.6 11.9 30.1 12.6

MLO 15.4 13.4 6.58 12.1

0.002 uniform 39.5 11.8 19.8 9.96

MLO 17.1 11.7 8.30 9.99

0.005 uniform 19.5 10.2 9.93 8.11

MLO 9.56 10.1 5.21 8.91

0.01 uniform 10.1 11.2 5.98 7.91

MLO 5.85 8.99 3.74 8.11

≈ 0.0168 Adaptive 2.57 10.4 1.78 7.69

From Table 4, with the same subsampling ratio, our MLO subsampled algorithm is better

than the uniform subsampled algorithm for both θ1 and θ2. Estimators from the the two

different subsampled algorithms may have similar standard errors, but estimators from MLO

subsampled MH algorithm have much smaller biases.

In order to compare the estimation efficiency of the subsampled algorithms with that of

full sample MH algorithm, we reduce the full data sample size to n = 1000 so that the full

sample MH algorithm are computationally tractable. Except this change, other simulation

configurations are the same as the previous case. Figure 2 shows the sum of the empirical

mean squared error for θ1 and θ2 with different subsampling methods. We see that even with

subsample size r = 20, i.e., using 2% of the full sample, our MLO subsampled MH algorithm

has similar estimation efficiency to the full sample MH algorithm. On the other hand, the

uniform subsampled MH algorithm requires a much larger subsample size to achieve the same
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level of estimation efficiency.
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Figure 2: Empirical MSE versus subsample size for logistic regression.

5 Covertype Data

We apply the MLO subsampled MH algorithm to the UCI Covertype data set. Like [3],

we convert the multiple classification problem into a binary classification problem by focusing

on predicting one class of the responses. We use the 10 continuous covariates to model the

probability that the response belongs to this class through a logistic regression model with an

intercept. The total number of data points in this data set is n =581,012. We run 500,000 MH

iterations, and throw the first 100,000 samples as burn-in and keep one sample for every 20

iterations after the burn-in. For Algorithm 3, we choose the initial subsample size as r = 1, 000

and rmax = 20, 000, and the average subsample size is around 14,000. We report posterior

means, posterior standard deviations and 95% highest posterior density (HPD) intervals [2]

for parameters in logistic regression in following Table 5. We also obtain posterior estimates

form the uniform subsampled MH algorithm for comparisons, and we set r = 15, 000 for this

approach.

Table 5: Results for the covertype data set
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MLO subsampling

Parameter Posterior Mean SD 95% HPD interval

θ0 -2.277 1.020 (-4.354, -0.477)

θ1 -0.525 0.020 (-0.564, -0.487)

θ2 -0.069 0.022 (-0.113, -0.027)

θ3 0.104 0.041 (0.026, 0.181)

θ4 0.262 0.024 (0.216, 0.309)

θ5 -0.051 0.022 (-0.097, -0.007)

θ6 0.126 0.019 (0.089, 0.161)

θ7 0.572 0.160 (0.304, 0.920)

θ8 0.018 0.094 (-0.192, 0.181)

θ9 0.547 0.186 (0.232, 0.952)

θ10 0.285 0.019 (0.246, 0.323)

uniform subsampling

Parameter Posterior Mean SD 95% HPD interval

θ0 -3.43 1.129 (-6.161, -1.478)

θ1 -0.525 0.025 (-0.576, -0.476)

θ2 -0.067 0.030 (-0.129, -0.011)

θ3 0.144 0.046 (0.056, 0.249)

θ4 0.256 0.027 (0.205, 0.309)

θ5 -0.044 0.026 (-0.095, 0.004)

θ6 0.124 0.017 (0.091, 0.156)

θ7 0.769 0.157 (0.471, 1.136)

θ8 -0.101 0.090 (-0.310, 0.079)

θ9 0.779 0.183 (0.472, 1.242)

θ10 0.290 0.023 (0.245, 0.336)

In Table 5, the uniform subsampled MH algorithm results in larger posterior standard devi-

ations than the adaptive MLO subsampled MH algorithm with similar subsample sizes. From

the uniform subsampled MH algorithm, θ5 is not significant, which is not consistent with the

result from the full data MLE confidence interval. We also observe that the MLO subsampled

MH algorithm converged faster to the posterior distribution than uniform subsampled MH al-

gorithm for this data set. Thus, we need less number of iterations of the MH algorithm with

MLO subsampling for the same level of Monte Carlo error.

6 Conclusion

In this paper, we have developed subsampled MH algorithms with most like optimal subsam-

pling probabilities in approximating the full data log-likelihood. We have also provide a rule to

determine the required subsample size in each MH iteration adaptively. In experiments based
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on both simulated and real data sets, our MLO subsampled MH algorithms have outperformed

the uniform subsampled MH algorithm.

We conclude this paper by pointing to some directions for future research. First, model

selection has always been an important topic in statistical analysis, but this topic has not been

investigated in the context of data-dependent subsampling. Thus developing Bayesian model

selection criteria [5] for subsampling algorithm is a desirable future research topic. Second, in

this paper we have only considered sampling the data to approximate the likelihood. A sub-

sampling strategy to sample from the posterior distribution warrants further research. Third,

we assume that the full data are available all at once in this paper. Developing subsampled

Bayesian estimation procedures in an online learning setting is an interesting task with signifi-

cantly practical value.
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