Skip to main content
Log in

Long-Time Behavior and Density Function of a Stochastic Chemostat Model with Degenerate Diffusion

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper considers a stochastic chemostat model with degenerate diffusion. Firstly, the Markov semigroup theory is used to establish sufficient criteria for the existence of a unique stable stationary distribution. The authors show that the densities of the distributions of the solutions can converge in L1 to an invariant density. Then, conditions are obtained to guarantee the washout of the microorganism. Furthermore, through solving the corresponding Fokker-Planck equation, the authors give the exact expression of density function around the positive equilibrium of deterministic system. Finally, numerical simulations are performed to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith H L and Waltman P, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge University Press, Cambridge, 1995.

    Book  Google Scholar 

  2. Butler G J and Wolkowicz G S K, A mathematical model of the chemostat with a general class of functions describing nutrient uptake, SIAM J. Appl. Math., 1985, 45: 138–151.

    Article  MathSciNet  Google Scholar 

  3. Butler G J, Hsu S B, and Waltman P, A mathematical model of the chemostat with periodic washout rate, SIAM J. Appl. Math., 1985, 45(3): 435–449.

    Article  MathSciNet  Google Scholar 

  4. Lenas P and Pavlou S, Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate, Math. Biosci., 1995, 129(2): 111–142.

    Article  Google Scholar 

  5. Sun S L and Chen L S, Dynamic behaviors of Monod type chemostat model with impulsive perturbation on the nutrient concentration, J. Math. Chem., 2007, 42(4): 837–847.

    Article  MathSciNet  Google Scholar 

  6. Rapaport A and Harmand J, Biological control of the chemostat with nonmonotonic response and different removal rates, Math. Biosci. Eng., 2008, 5(3): 539–547.

    Article  MathSciNet  Google Scholar 

  7. Liu S Q, Wang X X, Wang L, et al., Competitive exclusion in delayed chemostat models with differential removal rates, SIAM J. Appl. Math., 2014, 74(3): 634–648.

    Article  MathSciNet  Google Scholar 

  8. Chen L S, Meng X Z, and Jiao J J, Biological Dynamics, Science Press, Beijing, 1993.

    Google Scholar 

  9. Imhof L and Walcher S, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differential Equations, 2015, 217(1): 26–53.

    Article  MathSciNet  Google Scholar 

  10. Xu C Q and Yuan S L, An analogue of break-even concentration in a simple stochastic chemostat model, Appl. Math. Lett., 2015, 48: 62–68.

    Article  MathSciNet  Google Scholar 

  11. Xu C Q and Yuan S L, Competition in the chemostat: A stochastic multi-species model and its asymptotic behavior, Math. Biosci., 2016, 280: 1–9.

    Article  MathSciNet  Google Scholar 

  12. Xu C Q, Yuan S L, and Zhang T H, Sensitivity analysis and feedback control of noise-induced extinction for competition chemostat model with mutualism, Physica A, 2018, 505: 891–902.

    Article  MathSciNet  Google Scholar 

  13. Zhang Q M and Jiang D Q, Competitive exclusion in a stochastic chemostat model with Holling type II functional response, J. Math. Chem., 2016, 54(3): 777–791.

    Article  MathSciNet  Google Scholar 

  14. Sun S L, Sun Y R, Zhang G, et al., Dynamical behavior of a stochastic two-species Monod competition chemostat model, Appl. Math. Comput., 2017, 298: 153–170.

    MathSciNet  MATH  Google Scholar 

  15. Sun M J, Dong Q L, and Wu J, Asymptotic behavior of a Lotka-Volterra food chain stochastic model in the chemostat, Stoch. Anal. Appl., 2017, 35(4): 645–661.

    Article  MathSciNet  Google Scholar 

  16. Wang L and Jiang D Q, A note on the stationary distribution of the stochastic chemostat model with general response functions, Appl. Math. Lett., 2017, 73: 22–28.

    Article  MathSciNet  Google Scholar 

  17. Gao M M and Jiang D Q, Stationary distribution of a stochastic food chain chemostat model with general response functions, Appl. Math. Lett., 2019, 91: 151–157.

    Article  MathSciNet  Google Scholar 

  18. Khasminskii R, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Alphen aan den Rijn, Netherlands, 1980.

    Book  Google Scholar 

  19. Rudnicki R, Long-time behaviour of a stochastic prey-predator model, Stochastic Process. Appl., 2003, 108(1): 93–107.

    Article  MathSciNet  Google Scholar 

  20. Rudnicki R and Pichór K, Influence of stochastic perturbation on prey-predator systems, Math. Biosci., 2007, 206(1): 108–119.

    Article  MathSciNet  Google Scholar 

  21. Mao X R, Stochastic Differential Equations and Applications, Horwood, Chichester, 1997.

    MATH  Google Scholar 

  22. Ji C Y, Jiang D Q, and Shi N Z, Multigroup SIR epidemic model with stochastic perturbation, Physica A, 2011, 390(10): 1747–1762.

    Article  Google Scholar 

  23. Bell D R, The Malliavin Calculus, Dover Publications, New York, 2006.

    MATH  Google Scholar 

  24. Aida S, Kusuoka S, and Strook D, On the support of Wiener functionals, Eds. by Elworthy K D and Ikeda N, Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotic, Pitman Research Notes in Mathematics Series, Vol. 284, Longman Scientific Technical, Harlow, 1993, 3–34.

    Google Scholar 

  25. Arous G B and Léandre R, Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probab. Theory Related Fields, 1991, 90: 377–402.

    Article  MathSciNet  Google Scholar 

  26. Stroock D W and Varadhan S R S, On the support of diffusion processes with applications to the strong maximum principle, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol.III, University of California Press, Berkeley, 1972, 333–360.

    Google Scholar 

  27. Lin Y G, Jiang D Q, and Xia P Y, Long-time behavior of a stochastic SIR model, Appl. Math. Comput., 2014, 236: 1–9.

    MathSciNet  MATH  Google Scholar 

  28. Pichór K and Rudnicki R, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl., 1997, 215: 56–74.

    Article  MathSciNet  Google Scholar 

  29. Liu H, Li X X, and Yang Q S, The ergodic property and positive recurrence of a multi-group Lotka-Volterra mutualistic system with regime switching, Systems Control Lett., 2013, 62(10): 805–810.

    Article  MathSciNet  Google Scholar 

  30. Higham D J, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 2001, 43(3): 525–546.

    Article  MathSciNet  Google Scholar 

  31. Li D, Liu S Q, and Cui J A, Threshold dynamics and ergodicity of an SIRS epidemic model with semi-Markov switching, J. Differential Equations, 2019, 266(7): 3973–4017.

    Article  MathSciNet  Google Scholar 

  32. Wang B and Zhu Q X, Stability analysis of semi-Markov switched stochastic systems, Automatica, 2018, 94: 72–80.

    Article  MathSciNet  Google Scholar 

  33. Xie W J and Zhu Q X, Self-triggered state-feedback control for stochastic nonlinear systems with Markovian switching, IEEE Trans. Syst. Man Cybern. Syst., 2020, 50(9): 3200–3209.

    Article  Google Scholar 

  34. Gao M M, Jiang D Q, and Hayat T, The threshold of a chemostat model with single-species growth on two nutrients under telegraph noise, Commun. Nonlinear Sci. Numer. Simulat., 2019, 75: 160–173.

    Article  MathSciNet  Google Scholar 

  35. Zhu Q X, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE Trans. Autom. Control, 2019, 64(9): 3764–3771.

    Article  MathSciNet  Google Scholar 

  36. Zhu Q X, Stability analysis of stochastic delay differential equations with Lévy noise, Systems Control Lett., 2018, 118: 62–68.

    Article  MathSciNet  Google Scholar 

  37. Zhang D X, Ding W W, and Zhu M, Existence of positive periodic solutions of competitor-competitor-mutualist Lotka-Volterra systems with infinite delays, Journal of Systems Science and Complexity, 2015, 28(2): 316–326.

    Article  MathSciNet  Google Scholar 

  38. Kutoyants Y A, Statistical Inference for Ergodic Diffusion Processes, Springer, London, 2003.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdan Wen.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant No. 11871473, the Natural Science Foundation of Shandong Province under Grant No. ZR2019MA010 and the Science and Technology Research Project of Jilin Provincial Department of Education of China under Grant No. JJKH20180462KJ.

This paper was recommended for publication by Editor LIU Shujun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Jiang, D. & Wen, X. Long-Time Behavior and Density Function of a Stochastic Chemostat Model with Degenerate Diffusion. J Syst Sci Complex 35, 931–952 (2022). https://doi.org/10.1007/s11424-021-0170-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-021-0170-9

Keywords

Navigation