Skip to main content
Log in

Task-Space Tracking Control of Robotic Manipulator Via Intermittent Controller

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

An intermittent controller for robotic manipulator in task space was developed in this paper. In task space, for given a desired time-varying trajectory, the robot end-effector can track the desired target under the designed intermittent controller. Different from most of the existing works on control of robotic manipulator, the intermittent control for robotic manipulator is discussed in task space instead of joint space. Besides, the desired trajectory can be time-varying and not limited to constant. As a direct application, the authors implemented the proposed controller on tracking of a two-link robotic manipulator in task space. Numerical simulations demonstrate the effectiveness and feasibility of the proposed intermittent control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang H Q, Xu K, and Qiu J B, Event-triggered adaptive fuzzy fixed-time tracking control for a class of nonstrict-feedback nonlinear systems, IEEE T. Circuits — I, 2021, 68: 3058–3068.

    Google Scholar 

  2. Liu C G, Wang H Q, Liu X P, et al., Adaptive finite-time fuzzy funnel control for nonaffine nonlinear systems, IEEE Trans. Syst. Man. Cybern. Syst., 2021, 51: 2894–2903.

    Article  Google Scholar 

  3. Wang H Q, Bai W, Zhao X D, et al., Finite-time-prescribed performance-based adaptive fuzzy control for strict-feedback nonlinear systems with dynamic uncertainty and actuator faults, IEEE T. Cybernetics, 2021, DOI: https://doi.org/10.1109/TCYB.2020.3046316.

  4. Liu C G, Liu X P, Wang H Q, et al., Adaptive control and application for nonlinear systems with input nonlinearities and unknown virtual control coefficients, IEEE T. Cybernetics, 2021, DOI: https://doi.org/10.1109/TCYB.2021.3054373.

  5. Moura J, Mccoll W, Taykaldiranian G, et al., Automation of train cab front cleaning with a robot manipulator, IEEE Robot. Autom. Let., 2018, 3: 3058–3065.

    Article  Google Scholar 

  6. Hussein A, Adel M, Bakr M, et al., Multi-robot task allocation for search and rescue missions, J. Phys. Conf., 2014, 570: 052006.

    Article  Google Scholar 

  7. Stolt A, Linderoth M, Robertsson A, et al., Detection of contact force transients in robotic assembly, Proc. IEEE Int. Conf. Robot. Autom., 2015, 962–968.

  8. Jafarov E M, Parlakci M N, and Istefanopulos Y, A new variable structure PID-controller design for robot manipulators, IEEE T. Contr. Syst. T., 2005, 13: 122–130.

    Article  Google Scholar 

  9. She W Q and Ma M H, Tracking synchronization of networked Lagrangian systems via impulsive control and its applications, Journal of Systems Science & Complexity, 2019, 32(4): 1093–1103.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ren W, Distributed leaderless consensus algorithms for networked Lagrange systems, Int. J. Control, 2009, 82: 2137–2149.

    Article  MathSciNet  MATH  Google Scholar 

  11. Mei J, Ren W, and Ma G F, Distributed coordinated tracking with a dynamic leader for multiple Euler-Lagrange systems, IEEE Trans. Autom. Conrol, 2011, 56: 1415–1421.

    Article  MathSciNet  MATH  Google Scholar 

  12. Nikdel N, Badamchizadeh M A, Azimirad V, et al., Adaptive backstepping control for an n-degree of freedom robotic manipulator based on combined state augmentation, Robot. Cim-Int Manufr., 2017, 44: 129–143.

    Article  Google Scholar 

  13. Guo Q, Zhang Y, Celler B G, et al., Neural adaptive backstepping control of a robotic manipulator with prescribed performance constraint, IEEE T. Neur. Net. Lear., 2018, 99: 1–12.

    Google Scholar 

  14. Mahyuddin M N, Herrmann G, and Khan S G, A novel adaptive control algorithm in application to a humanoid robot arm, Towards Auton. Robot. Syst., 2012, 7429: 25–36.

    Google Scholar 

  15. Sun W, Xia J, and Wu Y, Adaptive tracking control for mobile manipulators with stochastic disturbances, Journal of Systems Science & Complexity, 2019, 32(5): 1393–1403.

    Article  MathSciNet  MATH  Google Scholar 

  16. Kelly R and Salgado R, PD control with computed feedforward of robot manipulators: A design procedure, IEEE T. Robotic Autom., 1994, 10: 566–571.

    Article  Google Scholar 

  17. Santibaez V and Kelly R, PD control with feedforward compensation for robot manipulators: Analysis and experimentation, Robotica, 2001, 19: 11–19.

    Article  Google Scholar 

  18. Dixon W E, Adaptive regulation of amplitude limited robot manipulators with uncertain kinematics and dynamics, IEEE T. Automat Contr., 2007, 52: 488–493.

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu Y C and Chopra N, Controlled synchronization of heterogeneous robotic manipulators in the task space, IEEE T. Robot., 2012, 28: 268–275.

    Article  Google Scholar 

  20. Wang H L, Passivity based synchronization for networked robotic systems with uncertain kinematics and dynamics, Automatica, 2013, 49: 755–761.

    Article  MathSciNet  MATH  Google Scholar 

  21. Gholipour R and Fateh M M, Adaptive task-space control of robot manipulators using the Fourier series expansion without task-space velocity measurements, Measurement, 2018, 123: 285–292.

    Article  Google Scholar 

  22. Sadeghian H, Villani L, Keshmiri M, et al., Task-space control of robot manipulators with null-space compliance, IEEE T. Robot., 2014, 30: 493–506.

    Article  Google Scholar 

  23. Izadbakhsh A and Khorashadizadeh S, Robust task-space control of robot manipulators using differential equations for uncertainty estimation, Robotica, 2017, 35: 1923–1938.

    Article  Google Scholar 

  24. Gholipour R and Fateh M M, Robust control of robotic manipulators in the task-space using an adaptive observer based on chebyshev polynomials, Journal of Systems Science & Complexity, 2020, 33(5): 1360–1382.

    Article  MathSciNet  MATH  Google Scholar 

  25. Zochowski M, Intermittent dynamical control, Physica D, 2000, 45: 181–190.

    Article  MATH  Google Scholar 

  26. Cai S M, Lei X Q, and Liu Z R, Outer synchronization between two hybrid-coupled delayed dynamical networks via aperiodically adaptive intermittent pinning control, Complexity, 2016, 21: 593–605.

    Article  MathSciNet  Google Scholar 

  27. Liu X W, Liu Y, and Zhou L J, Quasi-synchronization of nonlinear coupled chaotic systems via aperiodically intermittent pinning control, Neurocomputing, 2016, 173: 759–767.

    Article  Google Scholar 

  28. Cai S M, Li X J, Zhou P P, et al., Aperiodic intermittent pinning control for exponential synchronization of memristive neural networks with time-varying delays, Neurocomputing, 2019, 332: 249–258.

    Article  Google Scholar 

  29. Zheng S, Stability analysis of uncertain complex-variable delayed nonlinear systems via intermittent control with multiple switched periods, Kybernetika, 2018, 54: 937–957.

    MathSciNet  MATH  Google Scholar 

  30. Hu C and Yu J, Generalized intermittent control and its adaptive strategy on stabilization and synchronization of chaotic systems, Chaos Solitons & Fractals, 2016, 91: 262–269.

    Article  MathSciNet  MATH  Google Scholar 

  31. Huang J, Li C, Huang T, et al., Lag quasisynchronization of coupled delayed systems with parameter mismatch by periodically intermittent control, Nonlinear Dyn., 2013, 71: 469–478.

    Article  MathSciNet  MATH  Google Scholar 

  32. Ma M H, Cai J P, and Zhang H, Quasi-synchronization of Lagrangian networks with parameter mismatches and communication delays via aperiodically intermittent pinning control, Physica A, 2019, 525: 1146–1160.

    Article  MathSciNet  MATH  Google Scholar 

  33. Ma M H and Cai J P, Synchronization of Lagrangian networks with a directed graph via aperiodically intermittent pinning control, Neurocomputing, 2018, 313: 175–183.

    Article  Google Scholar 

  34. Ma M H and Cai J P, Synchronization of master-slave Lagrangian systems via intermittent control, Nonlinear Dyn., 2017, 89: 39–48.

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhao L Y, Ji J C, Wu Q J, et al., Tracking task-space synchronization of networked Lagrangian systems with switching topology, Nonlinear Dyn., 2016, 83: 1673–1685.

    Article  MathSciNet  MATH  Google Scholar 

  36. Ma M H and Cai J P, An intermittent controller for robotic manipulator in task space, Int. J. Mod. Phys. C, 2021, 32: 2150021.

    Article  MathSciNet  Google Scholar 

  37. Chung S J, Nonlinear control and synchronization of multiple Lagrangian systems with application to tethered formation flight spacecraft, Doctor’s Degree Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mihua Ma or Jianping Cai.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant No. 61603174, and the Natural Science Foundation of Fujian under Grant No. 2020J01793.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Cai, J. Task-Space Tracking Control of Robotic Manipulator Via Intermittent Controller. J Syst Sci Complex 35, 2248–2262 (2022). https://doi.org/10.1007/s11424-022-1139-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-022-1139-z

Keywords

Navigation