Skip to main content
Log in

Study on the stability of switched dissipative Hamiltonian systems

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

The hybrid Hamiltonian system is a kind of important nonlinear hybrid systems. Such a system not only plays an important role in the development of hybrid control theory, but also finds many applications in practical control designs for obtaining better control performances. This paper investigates the stability of switched dissipative Hamiltonian systems under arbitrary switching paths. Under a realistic assumption, it is shown that the Hamiltonian functions of all the subsystems can be used as the multiple-Lyapunov functions for the switched dissipative Hamiltonian system. Based on this and using the dissipative Hamiltonian structural properties, this paper then proves that the P-norm of the state of switched dissipative Hamiltonian system converges to zero with the time increasing, and presents two sufficient conditions for the asymptotical stability under arbitrary switching paths. Utilizing these new results, this paper also obtains two useful corollaries for the asymptotical stability of switched nonlinear time-invariant systems. Finally, two examples are studied by using the new results proposed in this paper, and some numerical simulations are carried out to support our new results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ge S S, Lee T H, Harris C J. Adaptive Neural Network Control of Robotic Manipulators. London: World Scientific, 1998.

    Google Scholar 

  2. Fossen T I. Marine Control Systems: Guidance, Navigation, and Control of Ships, Rigs and Underwater Vehicles. Trondheim (Norway): Marine Cybernetics AS, 2002

    Google Scholar 

  3. Slotine J E, Li W. Applied Nonlinear Control. New Jersey: Prentice Hall, 1991

    MATH  Google Scholar 

  4. Bullo F. Averaging and vibrational control of mechanical systems. SIAM J Control Optim, 2002, 41(2): 542–562

    Article  MATH  MathSciNet  Google Scholar 

  5. Wang Y Z, Cheng D Z, Li C W, et al. Dissipative Hamiltonian realization and energy-based L 2-disturbance attenuation control of multimachine power systems. IEEE Trans Autom Control, 2003, 48(8): 1428–1433

    Article  MathSciNet  Google Scholar 

  6. Xi Z R, Cheng D Z, Lu Q, et al. Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica, 2002, 38(3): 527–534

    Article  MATH  Google Scholar 

  7. Sun Y Z, Shen T L, Ortega R, et al. Decentralized controller design for multimachine power systems on Hamiltonian structure, In: Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida. New York: IEEE, 2001, 3045–3050

    Google Scholar 

  8. Wang Y Z, Li C W, Cheng D Z. Generalized Hamiltonian realization of time-invariant nonlinear systems. Automatica, 2003, 39(8): 1437–1443

    Article  MATH  MathSciNet  Google Scholar 

  9. Maschke B M, Ortega R, van der Schaft A J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans Autom Control, 2000, 45(8): 1498–1502

    Article  MATH  Google Scholar 

  10. van der Schaft A J. L 2-gain and Passivity Techniques in Nonlinear Control, Berlin: Springer, 1999

    MATH  Google Scholar 

  11. Dalsmo M, van der Schaft A J. On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM J Control Optim, 1999, 37(1): 54–91

    Article  MATH  MathSciNet  Google Scholar 

  12. Wang Y Z, Cheng D Z, Hu X M. Problems on time-varying Hamiltonian systems: geometric structure and dissipative Hamiltonian realization. Automatica, 2005, 41(5): 717–723

    Article  MATH  MathSciNet  Google Scholar 

  13. Wang Y Z, Li C, Cheng D Z. New approaches to generalized Hamiltonian realization of autonomous nonlinear systems. Sci China Ser F-Inf Sci, 2003, 46(6): 431–444

    Article  MATH  MathSciNet  Google Scholar 

  14. Wang Y Z, Ge S S, Cheng D Z. Observer and observer-based H control of generalized Hamiltonian systems. Sci China Ser F-Inf Sci, 2005, 48(2): 211–224

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheng D Z, Xi Z R, Lu Q, et al. Geometric structure of generalized controlled Hamiltonian systems and applications. Sci China Ser E-Eng Mater Sci, 2000, 43(4): 365–379

    Article  MATH  MathSciNet  Google Scholar 

  16. Ortega R, van der Schaft A J, Maschke B M, et al. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica, 2002, 38(4): 585–596

    Article  MATH  MathSciNet  Google Scholar 

  17. Courant T J. Dirac manifold. Trans Amer Math Soc, 1990, 319: 631–661

    Article  MATH  MathSciNet  Google Scholar 

  18. Escobar G, van der Schaft A J, Ortega R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica, 1999, 35(3): 445–452

    Article  MATH  MathSciNet  Google Scholar 

  19. Haddad W M, Nersesor S G, Chellaboina V S. Energy-based control for hybrid port-controlled Hamiltonian systems. Automatica, 2003, 39(8): 1425–1435

    Article  MATH  MathSciNet  Google Scholar 

  20. Dayawansa W P, Martin C F. A converse Lypunov theorem for a class of dynamical systems which undergo switching. IEEE Transactions on Automatic Control, 1999, 44(4): 751–760

    Article  MATH  MathSciNet  Google Scholar 

  21. Cheng D Z. Stabilization of planar switched systems. Systems and Control Letters, 2004, 51: 79–88

    Article  MathSciNet  MATH  Google Scholar 

  22. Branicky M S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans Autom Control, 1998, 43(4): 475–482

    Article  MATH  MathSciNet  Google Scholar 

  23. Cheng D Z, Lin Y, Guo L, et al. Stabilization of switched linear systems. IEEE Trans Autom Control, 2005, 50(5): 661–666

    Article  MathSciNet  Google Scholar 

  24. Zhao J, Dimirovski G M. Quadratic stability of a class of switched nonlinear systems. IEEE Trans Autom Control, 2004, 49(4): 574–578

    Article  MathSciNet  Google Scholar 

  25. Xie G, Wang L. Necessary and sufficient conditions for controllability and observability of switched impulsive control systems. IEEE Trans Autom Control, 2004, 49(6): 960–966

    Article  MathSciNet  Google Scholar 

  26. Zhao J, Spong M W. Hybrid control for global stabilization of the cart-pendulum systems. Automatica, 2001, 37(12): 1941–1951

    Article  MATH  MathSciNet  Google Scholar 

  27. Sun Z D, Ge S S. Switched Linear Systems: Control and Design. Berlin: Springer-Verlag, 2005

    MATH  Google Scholar 

  28. Williams S M, Martin C F. Adaptive frequency domain control of PPM switched power line conditioner. IEEE Trans Power Electron, 1991, 6: 665–670

    Article  Google Scholar 

  29. Rousseau H L. Discretisation of the switched flow systems: Influence on the chaotic behaviour. Computer and Industrial Engineering, 1999, 37(2): 501–504

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Yuzhen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Wang, Y. Study on the stability of switched dissipative Hamiltonian systems. SCI CHINA SER F 49, 578–591 (2006). https://doi.org/10.1007/s11432-006-2005-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-006-2005-7

Keywords

Navigation