Skip to main content
Log in

Vision implants: An electrical device will bring light to the blind

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

Cochlear implant has been successfully applied in clinic. Recent research indicates vision implants may be the potential way to restore sight for the blind. Here, principle and common structure of vision implants are introduced. Main vision approaches of retinal, optic nerve, and cortical prosthesis are reviewed. In our progress, electrical response at visual cortex is recorded, when penetrating electrodes stimulate rabbit optic nerve, vision implants based on optic nerve stimulator chip (ONSC) and Chipcon radio frequency (RF) chip are under developing. Despite several obstacles to overcome, promising results in animal and human experiments give scientists confidence that artificial vision implants will bring light to the blind in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. House W F. Cochlear implants. Ann Otol Rhinol Laryngol, 1976, 85(Suppl. 27, Pt. 2): 1–93

    Google Scholar 

  2. Zrenner E. Will retinal implants restore vision? Science, 2002, 295(5557): 1022–25

    Article  Google Scholar 

  3. Weiland J D, Liu W T, Humayun M S. Retinal prosthesis. Annu Rev Biomed Eng, 2005, 7: 361–401

    Article  Google Scholar 

  4. Becker M, Eckmiller R, Hunerman R. Psychophysical test of a tunable retina encoder for retinal implants. IEEE Neural Networks, 1999, 1: 92–95

    Google Scholar 

  5. Troyk P, Schwan M. Closed-loop class E transcutaneous power and data link for microimplants. IEEE Trans Biomed Eng, 1992, 39(6): 589–599

    Article  Google Scholar 

  6. Liu W, Vichienchom K, Clements M, et al. A neurostimulus chip with telemetry unit for retinal prosthesis device. IEEE Solid-State Circuits, 2000, 35(10): 1487–1497

    Article  Google Scholar 

  7. Nichols M. The challenges for hermetic encapsulation of implanted devices—a review. Crit Rev Biomed Eng, 1994, 22(1): 39–67

    MathSciNet  Google Scholar 

  8. Singh P R, Liu W, Sivaprakasam M, et al. A matched biphasic microstimulator for an implantable retinal prosthetic device. In: Proc Int Symp Circuits Syst, Hiroshima, Jpn, 2004, 4: 1–4

    MATH  Google Scholar 

  9. Sui X H, Zhang R X, Pei W H, et al. Fabrication of a silicon-based microprobe for neural interface applications. Chinese J Semicond, 2006, 27(10): 1703–1706

    Google Scholar 

  10. Lotfi B M, Joseph F R, David C S, et al. What blindness can tell us about seeing again: merging neuroplasticity and neuroprostheses, Nature Review | Neuroscience, 2005, 6: 71–77

    Article  Google Scholar 

  11. Chow A Y, Chow V Y, Packo K H, et al. The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. Arch Ophthalmol, 2004, 122: 460–469

    Article  Google Scholar 

  12. Pardue M T, Phillips M J, Yin H, et al. Possible sources of neuroprotection following subretinal silicon chip implantation in RCS rats. J Neural Eng, 2005, 2: S39–S47

    Article  Google Scholar 

  13. Zrenner E. The subretinal implant: can microphotodiode arrays replace degenerated retinal photoreceptors to restore vision? Ophthalmologica, 2002, 216(Suppl. 1): 8–20

    Article  Google Scholar 

  14. Sachs H G, Schanze T, Wilms M, et al. Subretinal implantation and testing of polyimide film electrode in cats. Graefes Arch Clin Exp Ophthalmol, 2005, 243: 464–468

    Article  Google Scholar 

  15. Sachs H G, Schanze T, Brunner U, et al. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development. J Neural Eng, 2005, 2: S57–S64

    Article  Google Scholar 

  16. Humayun M S, Weiland J D, Fujii G Y, et al. Visual perception in a blind subject with a chronic microelectronic crude operations and even see faces they have not seen in many years. retinal prosthesis. Vision Res, 2003, 43: 2573–2581

    Article  Google Scholar 

  17. Lakhanpal R, Yanai D, Weiland JD, et al. Advances in the development of visual prostheses. Curr Opin Ophthalmol, 2003, 14: 122–127

    Article  Google Scholar 

  18. Yanai D, Lakhanpal R R, Weiland J D, et al. The value of preoperative tests in the selection of blind patients for a permanent microelectronic implant. Trans Am Ophthalmol Soc, 2003, 101: 223–228

    Google Scholar 

  19. Guven D, Weiland J D, Fujii G Y, et al. Long-term stimulation by active epiretinal implants in normal and RCD1 dogs. J Neural Eng, 2005, 2: S65–S73

    Article  Google Scholar 

  20. Michael J M, David S H, Rohit R L, et al. Retinal prostheses for the blind. Ann Acad Med Singapore, 2006, 35: 137–144

    Google Scholar 

  21. Humayun M S, de Juan E Jr, Weiland J D, et al. Pattern electrical stimulation of the human retina. Vision Res, 1999, 39: 2569–2576

    Article  Google Scholar 

  22. Rizzo J F, Wyatt J, Loewenstein J, et al. Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Invest Ophthalmol Vis Sci, 2003, 44: 5362–5369

    Article  Google Scholar 

  23. Eckmiller R E, Neumann D, Baruth O. Tunable retina encoders for retina implants: why and how. J Neural Eng, 2005, 2: S91–S104

    Article  Google Scholar 

  24. Veraart C, Wanet-Defalque M C, Gerard B, et al. Pattern recognition with the optic nerve visual prosthesis. Artif Organs, 2003, 11: 996–1004

    Article  Google Scholar 

  25. Brindley G. The number of information channels needed for efficient reading. J Physiol, 1965, 177: 44–47

    Google Scholar 

  26. Brindley G, Rushton D. Implanted stimulators of the visual cortex as visual prosthetic devices. Trans Am Acad Ophthalmol Otolaryngol, 1974, 78: OP741–745

    Google Scholar 

  27. Dobelle W H, Mladejovsky M G, Girvin J P. Artifical vision for the blind: Electrical stimulation of visual cortex offers hope for a functional prosthesis. Science, 1974, 183(123): 440–444

    Article  Google Scholar 

  28. Pollen D A. Responses of single neurons to electrical stimulation of the surface of the visual cortex. Brain Behav Evol, 1977, 14(1–2): 67–86

    Google Scholar 

  29. Troyk P, Bak M, Berg J, et al. A model for intracortical visual prosthesis research. Artif Organs, 2003, 27: 1005–1015

    Article  Google Scholar 

  30. Fernandez E, Alfaro A, Tormos J M, et al. Mapping of the human visual cortex using imageguided transcranial magnetic stimulation, Brain Res Protoc, 2002, 10: 115–124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren QiuShi.

Additional information

Supported by the 973 National Basic Research Program of China (Grant No. 2005CB724302)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, J., Liu, Y., Ren, Q. et al. Vision implants: An electrical device will bring light to the blind. Sci. China Ser. F-Inf. Sci. 51, 101–110 (2008). https://doi.org/10.1007/s11432-007-0072-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-007-0072-z

Keywords

Navigation