Skip to main content
Log in

Time-varying clustering for local lighting and material design

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

This paper presents an interactive graphics processing unit (GPU)-based relighting system in which local lighting condition, surface materials and viewing direction can all be changed on the fly. To support these changes, we simulate the lighting transportation process at run time, which is normally impractical for interactive use due to its huge computational burden. We greatly alleviate this burden by a hierarchical structure named a transportation tree that clusters similar emitting samples together within a perceptually acceptable error bound. Furthermore, by exploiting the coherence in time as well as in space, we incrementally adjust the clusters rather than computing them from scratch in each frame. With a pre-computed visibility map, we are able to efficiently estimate the indirect illumination in parallel on graphics hardware, by simply summing up the radiance shoots from cluster representatives, plus a small number of operations of merging and splitting on clusters. With relighting based on the time-varying clusters, interactive update of global illumination effects with multi-bounced indirect lighting is demonstrated in applications to material animation and scene decoration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sloan P P, Kautz J, Snyder J. Pre-computed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans Graph, 2002, 21(3): 527–536

    Article  Google Scholar 

  2. Kristensen A W, Moller T A, Jensen H W. Precomputed local radiance transfer for real-time lighting design. ACM Trans Graph, 2005, 24(3): 1208–1215

    Article  Google Scholar 

  3. Kontkanen J, Turquin E, Holzschuch N, et al. Wavelet radiance transport for interactive indirect lighting. In: Tomas A-M, Wolfgang H, eds. Rendering Techniques. Massachusetts: A K Peters Ltd, 2006. 161–171

    Google Scholar 

  4. Sun X, Zhou K, Chen Y, et al. Interactive relighting with dynamic BRDFs. ACM Trans Graph, 2007, 26(3): 27

    Article  Google Scholar 

  5. Akerlund O, Unger M, Wang R. Precomputed visibility cuts for interactive relighting with dynamic BRDFs. In: Alexa M, Gortler S J, Ju T, eds. Proceeding of Pacific Conference on Computer Graphics and Applications. Washington: IEEE Computer Society, 2007. 161–170

    Google Scholar 

  6. Kajiya J T. The rendering equation. J Comput Graph, 1986, 20(4): 143–150

    Article  Google Scholar 

  7. Hanrahan P S, Salzman D B. A rapid hierarchical radiosity algorithm. J Comput Graph, 1991, 25(4): 197–206

    Article  Google Scholar 

  8. Walter B, Fernandez S, Arbree A, et al. Lightcuts: Ascalable approach to illumination. ACM Trans Graph, 2005, 24(3): 1098–1107

    Article  Google Scholar 

  9. Goral C, Torrance K, Greenberg D, et al. Modeling the interaction of light between diffuse surfaces. ACM SIGGRAPH Comput Graph, 1984, 18(3): 213–222

    Article  Google Scholar 

  10. Cohen M F, Chen S E, Wallace J R, et al. A progressive refinement approach to fast radiosity image generation. ACM SIGGRAPH Comput Graph, 1988, 22(4): 75–84

    Article  Google Scholar 

  11. Chen S E. Incremental radiosity: An extension of progressive radiosity to an interactive image synthesis system. ACM SIGGRAPH Comput Graph, 1990, 24(4): 135–144

    Article  Google Scholar 

  12. Ward G, Rubinstein F, Clear R. A ray tracing solution for diffuse interreflection. ACM SIGGRAPH Comput Graph, 1988, 22(3): 85–92

    Article  Google Scholar 

  13. Ben-Artzi A, Overbeck R, Ramamoorthi R. Real-time BRDF editing in complex lighting. ACM Trans Graph, 2006, 25(3): 945–954

    Article  Google Scholar 

  14. Jensen H W. Global illumination using photon maps. In: Pueyo X, Schröder P, eds. Rendering Techniques’96. New York: Springer, 1996. 21–30

    Google Scholar 

  15. Huang P J, Wang W C, Yang G, et al. Traversal fields for ray tracing dynamic scenes. In: Slater M, Tal A, et al., eds. Proceedings of the ACM Symposium on VRST. New York: ACM Press, 2006. 65–74

    Google Scholar 

  16. Huang P J, Wang W C, Yang G, et al. Accelerating ray-tracing using proxy polygons (in Chinese). Chin J Comput, 2006, 30(2): 262–271

    Google Scholar 

  17. Ng R, Ramamoorthi R, Hanrahan P. All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans Graph, 2003, 22(3): 376–381

    Article  Google Scholar 

  18. Liu X, Sloan P, Shum H -Y, et al. All-frequency precomputed radiance transfer for glossy objects. In: Alexander K, Jensen H W, eds. Proceeding of the Eurographics Symposium on Rendering 2004. Aire-la-Ville: Eurographics Association, 2004. 337–344

    Google Scholar 

  19. Wang R, Tran J, Luebke D. All-Frequency relighting of non-diffuse objects using separable BRDF approximation. In: Jensen H W, ed. Proceeding of the Eurographics Symposium on Rendering 2004. Aire-la-Ville: Eurographics Association, 2004. 345–354

    Google Scholar 

  20. Annen T, Kautz J, Durand F, et al. Spherical harmonic gradients for mid-range illumination. In: Alexander K, Jensen H W, eds. Proceeding of the Eurographics Symposium on Rendering 2004. Aire-la-Ville: Eurographics Association, 2004. 331–336

    Google Scholar 

  21. Sloan P P, Luna B, Snyder J. Local, deformable precomputed radiance transfer. ACM Trans Graph, 2005, 24(3): 1216–1224

    Article  Google Scholar 

  22. Szecsi L, Kalos L S, Sbert M. Light animation with precomputed light paths on the GPU. In: Gutwin C, Mann S, eds. Proceedings of Graphics Interface 2006. Toronto: Canadian Information Processing Society Toronto, 2006. 187–194

    Google Scholar 

  23. Christensen P H, Lischinski D, Stollnitz E J, et al. Clustering for glossy global illumination. ACM Trans Graph, 1997, 16(1): 3–33

    Article  Google Scholar 

  24. Castro F, Sbert M, Neumann L. Fast multipath radiosity using hierarchical subscenes. Comput Graph Forum, 2004, 23(1): 43–53

    Article  Google Scholar 

  25. Loscos C, Drettakis G, Robert L. Interactive virtual relighting of real scenes. IEEE Trans Visual Comput Graph, 2000, 6(3): 289–305

    Article  Google Scholar 

  26. Bekaert P, Neumann L, Neumann A, et al. Hierarchical Monte Carlo Radiosity. In: Drettakis G, Max N L, eds. Rendering Techniques 1998. Austria: Springer, 1998. 259–268

    Google Scholar 

  27. Carré S, Deniel J M, Guillou E, et al. Handling dynamic changes in hierarchical radiosity through interaction meshes. In: Barsky B A, Shinagawa Y, Wang W, et al., eds. The Eighth Pacific Conference on Computer Graphics and Applications. Washington: IEEE Computer Society, 2000. 40–51

    Chapter  Google Scholar 

  28. Smits B, Arvo J, Greenberg D. A clustering algorithm for radiosity in complex environments. In: Schweitzer D, Glassner A, Keeler M, eds. Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1994. 435–442

    Chapter  Google Scholar 

  29. Drettakis G, Sillion F. Interactive update of global illumination using a line-space hierarchy. In: Owen G S, Whitted T, Mones-Hattal B, eds. Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1997. 57–64

    Chapter  Google Scholar 

  30. Brian E S, James R, Arvo R, et al. An importance driven radiosity algorithm. ACM SIGGRAPH Comput Graph, 1992, 26(2): 273–282

    Article  Google Scholar 

  31. Sillion F, Drettakis G, Soler C. A clustering algorithm for radiance calculation in general environments. In: Hanrahan P, Purgathofer W, eds. Rendering Techniques ′95, New York: Springer-Verlag, 1995. 196–205

    Google Scholar 

  32. Schröder P, Gortler S J, Cohen M, et al. Wavelet radiosity. In: Whitton M C, ed. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1993. 221–230

    Google Scholar 

  33. Christensen P H, Stollnitz E J, DeRose T D, et al. Wavelet radiance. In: Sakas G, Shirley P, Muiller S, eds. Photorealistic Rendering Techniques. Berlin: Springer-Verlag, 1995. 295–309

    Google Scholar 

  34. Damez C, Holzschuch N, Sillion F. Space-time hierarchical radiosity with clustering and higher-order wavelets. Comput Graph Forum, 2001, 23(2): 35–42

    Google Scholar 

  35. Sbert M, Szécsi L, Szirmay-Kalos L. Real-time light animations. Computer Graphics Forum, 2004, 23(3): 291–299

    Article  Google Scholar 

  36. Overbeck R, Ben-Artzi A, Ramamoorthi R, et al. Exploiting temporal coherence for incremental all-frequency relighting. In: Akenine-Möller T, Heidrich W, eds. Eurographics Symposium on Rendering 2006. Aire-la-Ville: Eurographics Association, 2006. 151–160

    Google Scholar 

  37. Jensen H W. Realistic Image Synthesis Using Photon Mapping. Massachusetts: AK Peters Ltd., 2003. 1–600

    Google Scholar 

  38. Ahuja R K, Magnanti T L, Orlin J B. Network flows theory algorithms and applications. United States Ed edition. New Jersey: Prentice Hall, 1993. 1–700

    Google Scholar 

  39. Segovia B, Iehl J C, Mitanchey Rand, et al. Bidirectional instant radiosity. In: Akenine-Möller T, Heidrich W, eds. Eurographics Symposium on Rendering 2006. Aire-la-Ville: Eurographics Association, 2006. 151–160

    Google Scholar 

  40. Blackwell H R. Luminance difference thresholds. Handbook of Sensory Physiology, vol. VII/4: Visual Psychophysics. New York: Springer-Verlag, 1972. 78–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PeiJie Huang.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2009CB320802), the National Natural Science Foundation of China (Grant No. 60833007), the National High-Tech Research & Development Progran of China (Grant No. 2008AA01Z301), and the Research Grant of the University of Macau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, P., Gu, Y., Wu, X. et al. Time-varying clustering for local lighting and material design. Sci. China Ser. F-Inf. Sci. 52, 445–456 (2009). https://doi.org/10.1007/s11432-009-0059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0059-z

Keywords

Navigation