Skip to main content
Log in

SAR imaging simulation for an inhomogeneous undulated lunar surface based on triangulated irregular network

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

Based on the statistics of the lunar cratered terrain, e.g., population, dimension and shape of craters, the terrain feature of cratered lunar surface is numerically generated. According to the inhomogeneous distribution of the lunar surface slope, the triangulated irregular network (TIN) is employed to make the digital elevation of lunar surface model. The Kirchhoff approximation of surface scattering is then applied to simulation of lunar surface scattering. The synthetic aperture radar (SAR) image for comprehensive cratered lunar surface is numerically generated using back projection (BP) algorithm of SAR imaging. Making use of the digital elevation and Clementine UVVIS data at Apollo 15 landing site as the ground truth, an SAR image at Apollo 15 landing site is simulated. The image simulation is verified using real SAR image and echoes statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Thompson T W. Atlas of lunar radar maps at 70-cm wavelength. Moon, 1974 10: 87–117

    Article  Google Scholar 

  2. Thompson T W. High resolution lunar radar map at 70-cm wavelength. Earth Moon Planets, 1987 37: 59–70

    Article  Google Scholar 

  3. Thompson T W, Masursky H, Shorthill R W, et al.A comparison of infrared, radar and geologic mapping of lunar craters. Moon, 1974 10: 87–117

    Article  Google Scholar 

  4. Schaber G G, Thompson T W, Zisk S H. Lava flows in Mare Imbrium: an evaluation of anomalously low earth-based radar reflectivity. Moon, 1977 13: 395–423

    Article  Google Scholar 

  5. Phillips R J, Adams G F, Brown J W E, et al.Apollo lunar sounder experiment. NASA Spec Publ, 1973 330(22): 1–26

    Google Scholar 

  6. Porcello L J, Jordan R L, Zelenka J S, et al.The Apollo lunar sounder radar system. Proc IEEE, 1974 62(6): 769–788

    Article  Google Scholar 

  7. Ono T, Oya H. Lunar radar sounder (LRS) experiment onboard the SELENE spacecraft. Earth Planets Space, 2000 52: 629–637

    Google Scholar 

  8. Spudis P D, Bussey B, Lichtenberg C, et al. Mini-SAR: An imaging radar for the Chandrayaan 1 mission to the Moon. In: Proceedings of the 36th lunar science conference. New York: Pergamon, 2005. 1153

    Google Scholar 

  9. Chin G, Brylow S, Foote M, et al. An overview of the lunar reconnaissance orbiter: instrument suite and mission. In: the 8th ILEWG International Conference on Exploration and Utilization of the Moon. Beijing, 2006. 17–18

  10. Bussey D B J, Spudis P D, Nozette S, et al. Mini-RF: imaging radars for exploring the lunar poles. In: Proceedings of the 39th lunar science conference. New York: Pergamon, 2008. 2389

    Google Scholar 

  11. Fa W, Jin Y Q. Simulation of brightness temperature from lunar surface and inversion of regolith-layer thickness. J Geophys Res, 2007 112, E05003

    Article  Google Scholar 

  12. Fa W, Jin Y Q. Quantitative estimation of helium-3 spatial distribution in the lunar regolith layer. Icarus, 2007 190: 15–23

    Article  Google Scholar 

  13. Jin Y Q, Xu F, Fa W. Numerical simulation of polarimetric radar pulse echoes from lunar regolith layer with scatter inhomogeneity and rough interfaces. Radio Sci, 2007 42, RS3007

    Article  Google Scholar 

  14. Kobayashi T, Oya H, Ono T. A-scope analysis subsurface radar sounding of lunar mare region. Earth Planets Space, 2002 54: 973–982

    Google Scholar 

  15. Kobayashi T, Oya H, Ono T. B-scan analysis of subsurface radar sounding of lunar highland region. Earth Planets Space, 2002 54: 983–991

    Google Scholar 

  16. Kobayashi T, Ono T. SAR/InSAR observation by an HF Sounder. J Geophys Res, 2007 112, E03S90

    Article  Google Scholar 

  17. Nouvel J F, Herique A, Kofman W, et al.Radar signal simulation: surface modeling with the facet method. Radio Sci, 2004, 39, RS1013

    Article  Google Scholar 

  18. Paillou P, Lasne Y, Heggy E, et al.A study of P-band synthetic aperture radar applicability and performance for Mars exploration: imaging subsurface geology and detecting shallow moisture. J Geophys Res, 2006 111, E06S11

    Article  Google Scholar 

  19. Baldwin R B. Lunar crater count. Astrophys J, 1964 69: 377–391

    Google Scholar 

  20. Pike R J. Depth/diameter relations of fresh lunar craters: revision from spacecraft data. Geophys Res Lett, 1974 1: 291–294

    Article  Google Scholar 

  21. Heiken G H, Vaniman D T, French B M. Lunar Source-Book: A User’s Guide to the Moon. London: Cambridge University Press, 1991

    Google Scholar 

  22. Greeley R. Planetary Landscapes. Boston: Allen & Unwin, 1987

    Google Scholar 

  23. Dwyer R A. A faster divide and conquer algorithm for constructing Delaunay triangulations. Algorithmica, 1987 2(2): 137–151

    Article  MATH  MathSciNet  Google Scholar 

  24. Hagfors T. Remote sensing probing of the Moon by microwave emissions and by radar. Radio Sci, 1970 5: 189–227

    Article  Google Scholar 

  25. Shkuratov Yu G, Bondarenko N V. Regolith layer thickness mapping of the Moon by radar and optical data. Icarus, 2001 149: 329–338

    Article  Google Scholar 

  26. Tsang L, Kong J A, Ding K H. Theory of Microwave Remote Sensing. New York: John Wiley, 1985

    Google Scholar 

  27. Jin Y Q. Electromagnetic Scattering Modelling for Quantitative Remote Sensing. Singapore: World Scientific, 1994

    Google Scholar 

  28. Jin Y Q. Theory and Approach of Information Retrievals from Electromagnetic Scattering and Remote Sensing. Netherlands: Springer, 2005

    Google Scholar 

  29. Curlander J, McDonough R N. Synthetic Aperture Radar: System and Signal Processing. New York: John Wiley, 1991

    MATH  Google Scholar 

  30. Fung A K. Microwave Scattering and Emission Models and Their Applications. Boston: Artech House, 1994

    Google Scholar 

  31. Lucey P G, Blewett D T, Jolliff B L. Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet-visible images. J Geophys Res, 2000 105: 20297–20305

    Article  Google Scholar 

  32. Franceschetti G, Migliaccio M, Riccio D, et al.SARAS: a synthetic aperture radar (SAR) raw signal simulator. IEEE Trans Geosci Remote Sens, 1992 30(1): 110–123

    Article  Google Scholar 

  33. Henderson F M, Lewis A J. Manual of Remote Sensing. New York: John Wiley, 1998

    Google Scholar 

  34. Xu F, Jin Y Q. Imaging simulation of polarimetric SAR for a comprehensive terrain scene using the mapping and projection algorithm. IEEE Trans Geosci Remote Sens, 2006 44(11): 3219–3234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YaQiu Jin.

Additional information

Supported by the National Matural Science Foundation of China (Grant No. 40637033)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fa, W., Xu, F. & Jin, Y. SAR imaging simulation for an inhomogeneous undulated lunar surface based on triangulated irregular network. Sci. China Ser. F-Inf. Sci. 52, 559–574 (2009). https://doi.org/10.1007/s11432-009-0065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0065-1

Keywords

Navigation