Skip to main content
Log in

Meshless methods for physics-based modeling and simulation of deformable models

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

As 3D digital photographic and scanning devices produce higher resolution images, acquired geometric data sets grow more complex in terms of the modeled objects’ size, geometry, and topology. As a consequence, point-sampled geometry is becoming ubiquitous in graphics and geometric information processing, and poses new challenges which have not been fully resolved by the state-of-art graphical techniques. In this paper, we address the challenges by proposing a meshless computational framework for dynamic modeling and simulation of solids and thin-shells represented as point samples. Our meshless framework can directly compute the elastic deformation and fracture propagation for any scanned point geometry, without the need of converting them to polygonal meshes or higher order spline representations. We address the necessary computational techniques, such as Moving Least Squares, Hierarchical Discretization, and Modal Warping, to effectively and efficiently compute the physical simulation in real-time. This meshless computational framework aims to bridge the gap between the point-sampled geometry with physics-based modeling and simulation governed by partial differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farin G. Curves and Surfaces for CAGD: A Practical Guide. 5th ed. San Francisco: Morgan-Kaufmann, 2001. 119–146

    Google Scholar 

  2. Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation: A level set approach. IEEE Trans Pattern Anal, 1995, 17: 158–175

    Article  Google Scholar 

  3. DeRose T, Kass M, Truong T. Subdivision surfaces in character animation. In: Cunningham S, Bransford W S, Cohen M F, eds. Proceedings of Siggraph’98. Orlando: ACM Press, 1998. 85–94

    Google Scholar 

  4. Levoy M, Pulli K, Curless B, et al. The digital Michelangelo project: 3D scanning of large statues. In: Proceedings of Siggraph’00. New Orleans: ACM Press, 2000. 131–144

    Google Scholar 

  5. O’Brien J F, Hodgins J K. Graphical modeling and animation of brittle fracture. In: Proceedings of Siggraph’99. Los Angeles: ACM Press, 1999. 137–146

    Google Scholar 

  6. Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: an overview and recent developments. Comput Method Appl M, 1996, 139: 3–47

    Article  MATH  Google Scholar 

  7. Li S, Liu W K. Meshfree particle methods and their applications. Appl Mech Rev, 2002, 54: 1–34

    Article  Google Scholar 

  8. Desbrun M, Cani M P. Animating soft substances with implicit surfaces. In: Proceedings of Siggraph’95, 1995. 287–290

  9. Müller M, Keiser R, Nealen A, et al. Point-based animation of elastic, plastic and melting objects. In: Badler N, Desbrun M, Boulic R, et al. eds. Proceedings of ACM Siggraph/Eurographics Symposium on Computer Animation. Grenoble: Eurographics Association, 2004. 141–151

    Chapter  Google Scholar 

  10. Müller M, Heidelberger B, Teschner M, et al. Meshless deformations based on shape matching. ACM Trans Graph, 2005, 24(3): 471–478

    Article  Google Scholar 

  11. Pauly M, Keiser R, Adams B, et al. Meshless animation of fracturing solids. ACM Trans Graph, 2005, 24(3): 957–964

    Article  Google Scholar 

  12. Guo X, Qin H. Real-time meshless deformation. Comp Animat Virt World, 2005, 16(3–4): 189–200

    Article  Google Scholar 

  13. Wicke M, Steinemann D, Gross M. Efficient animation of point-sampled thin shells. Comput Graph Forum, 2005, 24(3): 667–676

    Article  Google Scholar 

  14. Belytschko T, Lu Y Y, Gu L. Element free galerkin methods. Int J Numer Meth Eng, 1994, 37: 229–256

    Article  MATH  MathSciNet  Google Scholar 

  15. Belytschko T, Lu Y Y, Gu L. Fracture and crack growth by element-free Galerkin methods. Model Simul Mat Sci Eng, 1994, 2: 519–534

    Article  Google Scholar 

  16. Lancaster P, Salkauskas K. Surfaces generated by moving least squares methods. Math Comput, 1981. 367: 141–158

    MathSciNet  Google Scholar 

  17. Pauly M, Keiser R, Kobbelt L, et al. Shape modeling with point-sampled geometry. ACM Trans Graph, 2003, 22(3): 641–650

    Article  Google Scholar 

  18. Xie H, Wang J, Hua J, et al. Piecewise C1 continuous surface reconstruction of noisy point clouds via local implicit quadric regression. In: Turk G, van Wijk J, Moorhead R, eds. Proceedings of IEEE Visualization’03. Seattle. IEEE Computer Society, 2003. 91–98

    Google Scholar 

  19. Guo X, Hua J, Qin H. Scalar-function-driven editing on point set surfaces. IEEE Comput Graph, 2004, 24(4): 43–52

    Article  Google Scholar 

  20. Ohtake Y, Belyaev A, Alexa M, et al. Multi-level partition of unity implicits. ACM Trans Graph, 2003, 22(3): 463–470

    Article  Google Scholar 

  21. Klaas O, Shephard M. Automatic generation of octree-based three-dimensional discretizations for partition of unity methods. Comput Mech, 2000, 25: 296–304

    Article  MATH  Google Scholar 

  22. Guo X, Li X, Bao Y, et al. Meshless thin-shell simulation based on global conformal parameterization. IEEE Trans Vis Comput Graph, 2006, 12(3): 375–385

    Article  Google Scholar 

  23. Organ D, Fleming M, Terry T, et al. Continuous meshless approximations for nonconvex bodies by diffraction and transparency. Comput Mech, 1996, 18: 1–11

    Article  MathSciNet  Google Scholar 

  24. Cirak F, Ortiz M, Schröder P. Subdivision surfaces: a new paradigm for thin-shell finite element analysis. Int J Numer Meth Eng, 2000, 47(12): 2039–2072

    Article  MATH  Google Scholar 

  25. Pentland A, Williams J. Good vibrations: model dynamics for graphics and animation. ACM Siggraph Comput Graph, 1989, 23(3): 207–214

    Article  Google Scholar 

  26. James D, Pai D. Dyrt: dynamic response textures for real time deformation simulation with graphics hardware. In: Proceedings of Siggraph’02. San Antonio: ACM Press, 2002. 582–585

    Google Scholar 

  27. Hauser K, Shen C, O’Brien J. Interactive deformation using modal analysis with constraints. In: Möller T, Ware C, eds. Proceedings of Graphics Interface. Halifax: A K Peters, 2003. 247–255

    Google Scholar 

  28. Choi M G, Ko H S. Modal warping: real-time simulation of large rotational deformation and manipulation. IEEE Trans Vis Comput Graph, 2005, 11(1): 91–101

    Article  Google Scholar 

  29. Baraff D, Witkin A. Large steps in cloth simulation. In: Cunningham S, Bransford W, Cohen M F, eds. Proceedings of Siggraph’98. Orlando: ACM Press, 1998. 43–54

    Google Scholar 

  30. Metaxas D, Terzopoulos D. Dynamic deformation of solid primitives with constraints. ACM Siggraph Comput Graph, 1992, 26(2): 309–312

    Article  Google Scholar 

  31. Zwicker M, Pauly M, Knoll O, et al. Pointshop3D: an interactive system for point-based surface editing. ACM Trans Graph, 2002, 21(3): 322–329

    Article  Google Scholar 

  32. Zhou K, Huang X, Xu W, et al. Direct manipulation of subdivision surfaces on GPUs. ACM Trans Graph, 2007, 26(3): 91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to XiaoHu Guo or Hong Qin.

Additional information

Supported by the National Science Foundation (Grant Nos. CCF-0727098, IIS-0710819)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Qin, H. Meshless methods for physics-based modeling and simulation of deformable models. Sci. China Ser. F-Inf. Sci. 52, 401–417 (2009). https://doi.org/10.1007/s11432-009-0069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0069-x

Keywords

Navigation