Skip to main content
Log in

Oversampling analysis in fractional Fourier domain

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

Oversampling is widely used in practical applications of digital signal processing. As the fractional Fourier transform has been developed and applied in signal processing fields, it is necessary to consider the oversampling theorem in the fractional Fourier domain. In this paper, the oversampling theorem in the fractional Fourier domain is analyzed. The fractional Fourier spectral relation between the original oversampled sequence and its subsequences is derived first, and then the expression for exact reconstruction of the missing samples in terms of the subsequences is obtained. Moreover, by taking a chirp signal as an example, it is shown that, reconstruction of the missing samples in the oversampled signal is suitable in the fractional Fourier domain for the signal whose time-frequency distribution has the minimum support in the fractional Fourier domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida L B. The fractional Fourier transform and timefrequency representations. IEEE Trans Signal Process, 1994, 42(11): 3084–3091

    Article  Google Scholar 

  2. Tao R, Deng B, Wang Y. Research progress of the fractional Fourier transform in signal processing. Sci China Ser F-Inf Sci, 2006, 49(1): 1–25

    Article  MATH  MathSciNet  Google Scholar 

  3. Tao R, Zhang F, Wang Y. Research progress on discretization of fractional Fourier transform. Sci China Ser F-Inf Sci, 2008, 51(7): 859–880

    Article  MathSciNet  Google Scholar 

  4. Tao R, Qi L, Wang Y. Theory and Application of the Fractional Fourier Transform (in Chinese). Beijing: Tsinghua University Press, 2004. 23–49

  5. Zayed A I. On the relationship between the Fourier transform and fractional Fourier transform. IEEE Signal Process Lett, 1996, 3(12): 310–311

    Article  MathSciNet  Google Scholar 

  6. Ozaktas H M, Barshan B, Mendlovic D, et al. Convolution, filtering, and multiplexing in fractional Fourier domains and their relationship to chirp and wavelet transform. J Opt Soc Amer A, 1994, 11(2): 547–559

    Article  MathSciNet  Google Scholar 

  7. Lohmann A W. Image rotation, Wigner rotation, and the fractional Fourier transform. J Opt Soc Amer A, 1993, 10(10): 2181–2186

    Article  MathSciNet  Google Scholar 

  8. Lohmann A W, B H Soffer Relationship between the Radon-Wigner and the fractional Fourier transform. J Opt Soc Amer A, 1994, 11(6): 1798–1801

    Article  MathSciNet  Google Scholar 

  9. Mustard D A. The fractional Fourier transform and the Wigner distribution. J Aust Math Soc B, 1996, 38: 209–219

    Article  MATH  MathSciNet  Google Scholar 

  10. Pei S C, Ding J J. Relations between fractional operations and time-frequency distributions, and their applications. IEEE Trans Signal Process, 2001, 49(8): 1638–1655

    Article  MathSciNet  Google Scholar 

  11. Ozaktas H M, Aytur O. Fractional Fourier domains. Signal Process, 1995, 46(1): 119–124

    Article  MATH  Google Scholar 

  12. Cariolaro G, Erseghe T, Kraniauskas P, et al. A unified framework for the fractional Fourier transform. IEEE Trans Signal Process, 1998, 46(12): 3206–3219

    Article  MATH  MathSciNet  Google Scholar 

  13. Almeida L B. Product and convolution theorems for the fractional Fourier transform. IEEE Signal Process Lett, 1997, 4(1): 15–17

    Article  MathSciNet  Google Scholar 

  14. Zayed A I. A convolution and product theorem for the fractional Fourier transform. IEEE Signal Process Lett, 1998, 5(4): 101–103

    Article  MathSciNet  Google Scholar 

  15. Tao R, Deng B, Zhang W Q, et al. Sampling and sampling rate conversion of band limited signals in the fractional Fourier transform domain. IEEE Trans Signal Process, 2008, 56(1): 158–171

    Article  MathSciNet  Google Scholar 

  16. Zhang F, Tao R. Multirate signal processing based on discrete time fractional Fourier transform (in Chinese). Prog Natl Sci, 2008, 18(1): 93–101

    Google Scholar 

  17. Xia X. On bandlimited signals with fractional Fourier transform. IEEE Signal Process Lett, 1996, 3(3): 72–74

    Article  Google Scholar 

  18. Zayed A I, Garcia A G. New Sampling formulae for the fractional Fourier transform. Signal Process, 1999, 77(1): 111–114

    Article  MATH  Google Scholar 

  19. Erseghe T, Kraniauskas P, Cariolaro G. Unified fractional Fourier transform and sampling theorem. IEEE Trans Signal Process, 1999, 47(12): 3419–3423

    Article  MATH  MathSciNet  Google Scholar 

  20. Candan C, Ozaktas H M. Sampling and series expansion theorems for fractional Fourier and other transforms. Signal Process, 2003, 83(11): 2455–2457

    Article  MATH  Google Scholar 

  21. Zhang W Q, Tao R. Sampling theorems for bandpass signals with fractional Fourier transform (in Chinese). Acta Electron Sin, 2005, 33(7): 1196–1199

    Google Scholar 

  22. Torres R, Pellat-Finet P, Torres Y. Sampling theorem for fractional bandlimited signals: a self-contained proof. Application to digital holography. IEEE Signal Process Lett, 2006, 13(11): 676–679

    Google Scholar 

  23. Zhang F, Tao R, Wang Y. Multi-channel sampling theorems for band-limited signals with fractional Fourier transform. Sci China Ser E-Tech Sci, 2008, 51(6): 790–802

    Article  MathSciNet  Google Scholar 

  24. Tao R, Li B Z, Wang Y. Spectral analysis and reconstruction for periodic nonuniformly sampled signals in fractional Fourier domain. IEEE Trans Signal Process, 2007, 55(7): 3541–3547

    Article  MathSciNet  Google Scholar 

  25. Chen W, Han B, Jia R Q. On simple oversampled A/D conversion in shift-invariant spaces. IEEE Trans Inf Theory, 2005, 51(2): 648–657

    Article  MathSciNet  Google Scholar 

  26. Lu A K, Roberts G W, Johns D A. A high-quality analog oscillator using oversampling D/A conversion techniques. IEEE Trans Circuits Syst II, 1994, 41(7): 437–444

    Article  MATH  Google Scholar 

  27. Galton I, Jensen H T. Oversampling parallel delta-sigma modulator A/D conversion. IEEE Trans Circuits Syst II, 1996, 43(2): 801–810

    Article  Google Scholar 

  28. Kim J, Jeong D K. Multi-gigabit-rate clock and data recovery based on blind oversampling. IEEE Commu Mag, 2003, 41(12): 68–74

    Article  Google Scholar 

  29. Choi Y, Jeong D K, Kim W. Jitter transfer analysis of tracked oversampling techniques for multigigabit clock and data recovery. IEEE Trans Circuits Syst II, 2003, 50(11): 775–783

    Article  Google Scholar 

  30. Jou S J, Lin C H, Chen Y H, Li Z H. Design and analysis of digital data recovery circuits using oversampling. IET Circuits Devices Syst, 2007, 1(1): 93–102

    Article  Google Scholar 

  31. Tong L, Xu G, Kailath T. Blind identification and estimation based on second-order statistics: A time domain approach. IEEE Trans Inf Theory, 1994, 40(2): 340–349

    Article  Google Scholar 

  32. Mannerkoski J, Taylor K P. Blind equalization using leastsquares lattice prediction. IEEE Trans Signal Process, 1999. 47(3): 630–640

    Article  Google Scholar 

  33. Tanaka T. A direct design of oversampled perfect reconstruction FIR filter banks. IEEE Trans Signal Process, 2006, 54(8): 3011–3022

    Article  Google Scholar 

  34. Cvetkovic Z, Vetterli M. Oversampled filter banks. IEEE Trans Signal Process, 1998, 46(5): 1245–1255

    Article  MathSciNet  Google Scholar 

  35. Tao R, Zhang H Y, Wang Y. Theory and Application of Multirate Digital Signal Processing (in Chinese). Beijing: Tsinghua University Press, 2007. 1–13

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Tao.

Additional information

Supported partially by the National Natural Science Foundation of China for Distinguished Young Scholars (Grant No. 60625104), the National Natural Science Foundation of China (Grant Nos. 60890072, 60572094), and the National Basic Research Program of China (Grant No. 2009CB724003)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Tao, R. & Wang, Y. Oversampling analysis in fractional Fourier domain. Sci. China Ser. F-Inf. Sci. 52, 1446–1455 (2009). https://doi.org/10.1007/s11432-009-0118-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0118-5

Keywords

Navigation