Skip to main content
Log in

Survey of locomotion control of legged robots inspired by biological concept

  • Special Focus
  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

Compared with wheeled mobile robots, legged robots can easily step over obstacles and walk through rugged ground. They have more flexible bodies and therefore, can deal with complex environment. Nevertheless, some other issues make the locomotion control of legged robots a much complicated task, such as the redundant degree of freedoms and balance keeping. From literatures, locomotion control has been solved mainly based on programming mechanism. To use this method, walking trajectories for each leg and the gaits have to be designed, and the adaptability to an unknown environment cannot be guaranteed. From another aspect, studying and simulating animals’ walking mechanism for engineering application is an efficient way to break the bottleneck of locomotion control for legged robots. This has attracted more and more attentions. Inspired by central pattern generator (CPG), a control method has been proved to be a successful attempt within this scope. In this paper, we will review the biological mechanism, the existence evidences, and the network properties of CPG. From the engineering perspective, we will introduce the engineering simulation of CPG, the property analysis, and the research progress of CPG inspired control method in locomotion control of legged robots. Then, in our research, we will further discuss on existing problems, hot issues, and future research directions in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bruce J, Lenser S, Veloso M. Fast parametric transitions for smooth quadrupedal motion. In: Birk A, Coradeschi S, Tadokoro S, eds. RoboCup-2001: The Fifth RoboCup Competitions and Conferences. Berlin: Springer-Verlag, 2002

    Google Scholar 

  2. Ma S, Tomiyama T, Wada H. Omnidirectional static walking of a quadruped robot. IEEE Trans Robot, 2005, 21(2): 152–161

    Article  Google Scholar 

  3. Stent G S, Kristan W B Jr, Friesen W D, et al. Neuronal generation of the leech swimming movement. Science, 1978, 200: 1348–1357

    Article  Google Scholar 

  4. Grillner S. Neurobiological bases of rhythmic motor acts in vertebrates. Science, 1985, 228(4696): 143–149

    Article  Google Scholar 

  5. Bachanam J T, Grillner S. Newly identified glutamate interneurons and their role in locomotion in lamprey spinal cord. Science, 1987, 236: 312–314

    Article  Google Scholar 

  6. Yuasa H, Ito M. Coordination of many oscillators and generation of locomotory patterns. Biol Cybern, 1990, 63: 177–184

    Article  MATH  Google Scholar 

  7. Collins J J, Stewart I. Coupled nonlinear oscillators and the symmetries of animal gaits. Nonlinear Sci, 1993, 3: 349–392

    Article  MATH  MathSciNet  Google Scholar 

  8. Shik M L, Severin F V, Orlovskii G N. Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics, 1966, 11: 756

    Google Scholar 

  9. Cruse H. What mechanisms coordinate leg movement in working arthropods. Trend NeuroSci, 1990, 13: 15–21

    Article  Google Scholar 

  10. Brewer B G, Jung R. Sensitivity analysis of a hybrid neural network for locomotor control in the lamprey. In: Biomedial Engineering Conference, Apr. 4–6, Biloxi, MS, USA, 1997. 353–356

  11. He C S. The neurophysiology basis for the rhythmic movement of human body. Foreign Medic Sci Phys Medic Rehabilit, 1994, 14(4): 160–162

    Google Scholar 

  12. Brown T G. The intrinsic factors in the act of p rogression in the mammal. Proc Royal Society of London, 1911, Ser B, 84(572): 308–319

    Article  Google Scholar 

  13. Brown T G. The factors in rhythmic activity of the nervous system. Proc Royal Society of London, 1912, Ser B, 85(579): 278–289

    Article  Google Scholar 

  14. Brown T G. On the nature of the fundamental activity of the nervous centres; together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system. J Physiol, 1914, 48: 18–46

    Google Scholar 

  15. Vilensky J A. Locomotor behaviour and control in human and non-human primates. Neurosci Biobehav Rev, 1987, 11: 263–274

    Article  Google Scholar 

  16. Shik M L, Severin F V, Orlovskii G N. Organization of locomotor synergism. Biophysics, 1966, 11: 1011–1019

    Google Scholar 

  17. Grillner S. Control of locomotion in bipeds, tetrapods and fish. Handbook of Physiology. Brooks V B, ed. Bethesda, MD: American Physiological Society, 1981. 1179–1236

    Google Scholar 

  18. Getting P A. Comparative analysis of invertebrate pattern generators. In: Cohen A H, Rossignol S, Grillner S, eds. Neural Control of Rhythmic Movements in Vertebrates. New York: Wiley, 1988. 101–127

    Google Scholar 

  19. Arbas E A, Calabrese R L. Slow oscillations of membrane potential in interneurons that control heartbeat in the medicinal leech. J Neurosci, 1987, 7(12): 3953–3960

    Google Scholar 

  20. Richards K S, Miller W L, Marder E. Maturation of the rhythmic: activity produce by the stomatogastric ganglion of the lobster, Homarus a mericanus. J Neurophysiol, 1999, 82: 2006–2009

    Google Scholar 

  21. Roberts A, Soffe S R, Wolf E S, et al. Central circuits controlling locomotion in young frog tadpoles. Annal New York Academy Sci, 1998, 860: 19–34

    Article  Google Scholar 

  22. Grillner S, Wallen P, Hill R, et al. Ion channels of importance for the locomotor pattern generation in the lamprey brainstem-spinal cord. J Physiol, 2001, 533(1): 23–30

    Article  Google Scholar 

  23. Duysens J, Henry W A A. Neural control of locomotion. Part 1: The central pattern from cats to humans. Gait Posture, 1998, 7(2): 131–141

    Article  Google Scholar 

  24. Duysens J. Human gait as a step in evolution. Brain, 2002, 125: 2589–2590

    Article  Google Scholar 

  25. Vilensky J A. Locomotor behaviour and control in human and nonhuman primates. Neurosci Biobehav Rev, 1987, 11: 263–274

    Article  Google Scholar 

  26. Bussel B, Roby-Brami A, Re’mi-Neris O, et al. Evidence for a spinal stepping generator in man. Paraplegia, 1996, 34: 91–92

    Google Scholar 

  27. Guadagnoli M A, Etnyre B, Rodrigue M L, et al. A test of a dual central pattern generator hypothesis for subcortical control of locomotion. J Electromyogr Kinesiol, 2000, 10(4): 241–247

    Article  Google Scholar 

  28. MacKay-Lyons M. Central pattern generation of locomotion: a review of the evidence. Phys Ther, 2002, 82: 69–83

    Google Scholar 

  29. Rossignol S. Locomotion and its recovery after spinal injury. Current Opinion Neurobiol, 2000, 10(6): 708–716

    Article  Google Scholar 

  30. Pearson K, Gordon J. Spinal reflexes. In: Kandel E R, Schwartz J H, Jessel T M, eds. Principles of Neural Science. Toronto, ON: McGraw-Hill, 2000. 713–736

    Google Scholar 

  31. Rossignol S, Dubuc R, Gossard J P. Dynamic sensorimotor interactions in locomotion. Physiolog Rev, 2006, 86: 89–154

    Article  Google Scholar 

  32. Cabelguen J M, Bourcier-Lucas C, Dubuc R. Bimodal locomotion elicited by electrical stimulation of the midbrain in the salamander notophthalmus viridesecens. J Neurosci, 2003, 23(6): 2434–2439

    Google Scholar 

  33. Grillner S. Neural control of vertebrate locomotion-central mechanisms and reflex interaction with special reference to the cat. In: Barnes W J P, et al., eds. Feedback and Motor Control in Invertebrates and Vertebrates, Croom Helm, 1985. 35–36

  34. Grillner S. Biological pattern generation: The cellular and computational logic of networks in motion. Neuron, 2006, 52(5): 751–766

    Article  Google Scholar 

  35. Grillner S, Degliana T, Ekeberg Ö, et al. Neural networks that coordinate locomotion and body orientation in lamprey. Trend Neurosci, 1995, 18(6): 270–279

    Article  Google Scholar 

  36. Grillner S, Georgopoulos A P, Jordan L M. Selection and initiation of motor behavior. In: Stein P S G, Grillner S, Selverston A I, Stuart D G, eds. Neurons, Networks and Motor Behavior. Cambridge, MA: MIT Press, 1997. 3–19

    Google Scholar 

  37. Grillner S, Wall’en P, Brodin L. Neuronal network generating locomotor behavior in lamprey: Circuitry, transmitters, membrane properties, and simulation. Ann Rev Neurosci, 1991, 14: 169–199

    Article  Google Scholar 

  38. Masakazu M, James D, Chi-Sang P. Entrainment, instability, quasi-periodicity, and chaos in a compound neural oscillator. J Comput Neurosci, 1998, 5: 35–51

    Article  MATH  Google Scholar 

  39. Selverston A I, Rowat P F. Modeling phase synchronization in a biologically-based network. In: Neural Netw IJCNN, Baltimore, MD, USA, 1992. 396–401

  40. Drew T. Neuronal mechanisms for the adaptive control of locomotion in the cat. In: Proceedings of Adaptive Motion of Animals and Machines. Montreal, Canada, 2000. 1–12

  41. Delcomyn F. Walking robots and the central and peripheral control of locomotion on insects. Auton Robot, 1999, 7: 259–270

    Article  Google Scholar 

  42. de Pina Filho A C, Dutra M S, Raptopoulos L S C. Mobile robots towards new applications. In: Lazinica A, ed. ARS/plV, Germany, December 2006. 784

  43. Shepherd G M. Neurobiology. Cai N S. Shanghai: Fudan University Press, 1992. 295–316

    Google Scholar 

  44. Zhang X L. Biological-inspired rhythmic motion and environmental adaptability for quadruped robot. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2004

    Google Scholar 

  45. Hodgkin A L, Huxley A F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Pjysiol, 1952, 116: 449–472

    Google Scholar 

  46. Hodgkin A L, Huxley A F. The components of membrane conductance in the giant axon of Loligo. J Pjysiol, 1952, 116: 473–496

    Google Scholar 

  47. Hodgkin A L, Huxley A F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Pjysiol, 1952, 116: 497–506

    Google Scholar 

  48. Hodgkin A L, Huxley A F. A quantitative description of membrane and its application to conduction and excitation in nerve. J Pjysiol, 1952, 117: 500–544

    Google Scholar 

  49. Fitzhugh R. Impulses and physiological state in theoretical models of nerve membrane. Biophys J, 1961, 1: 445–466

    Article  Google Scholar 

  50. Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc IRE, 1962, 50: 2061–2070

    Article  Google Scholar 

  51. Morris C, Lecar H. Voltage oscillations in the barnacle giant muscle fiber. Biophys J, 1981, 35: 193–213

    Article  Google Scholar 

  52. Lakshmananm M, Murali K. Chaos in Nonlinear Oscillators: Controlling and Synchronization. Singapore: World Scientific Press, 1996

    Google Scholar 

  53. Murali K, Lakshmananm M. Secure communication using a compound signal from generalized synchronizable chaotic systems. Phys Lett A, 1998, 241(6): 303–310

    Article  MATH  Google Scholar 

  54. Stein R B, Leun K V, Mangeron D, et al. Improved neuronal models for studying neural networks. Kybernetik, 1974a, 15: 1–9

    Article  Google Scholar 

  55. Stein R B, Leung K V, Williams D W, et al. Properties of small neural networks. Kybernetik, 1974b, 14: 223–230

    Google Scholar 

  56. Collins J J, Richmond S A. Hard-wired central pattern generators for quadrupedal locomotion. Biol Cybern, 1994, 71: 375–385

    Article  MATH  Google Scholar 

  57. Matsuoka K. Mechanism of frequency and pattern control in the neural rhythm generators. Biol Cybern, 1987, 56: 345–353

    Article  Google Scholar 

  58. Matsuoka K. Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol Cybern, 1985, 52: 367–376

    Article  MATH  MathSciNet  Google Scholar 

  59. Taga G. A model of the neuro-musculo-skeletal system for human locomotion I. Emergence of basic gait. Biol Cybern, 1995, 73: 97–111

    Article  MATH  Google Scholar 

  60. Taga G, Yamaguehi Y, Shimizu H. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biol Cybern, 1991, 65: 147–159

    Article  MATH  Google Scholar 

  61. Taga G. A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance. Biol Cybern, 1998, 78: 9–17

    Article  MATH  Google Scholar 

  62. Kimura H, Akiyama S, Sakurama K. Realization of dynamic walking and running of the quadruped using neuron oscillator. Autonom Robots, 1999, 7: 247–258

    Article  Google Scholar 

  63. Kimura H, Fukuoka Y. Biologically inspired dynamic walking of a quadruped robot on irregular terrain-adaptation at spinal cord and brain stem. In: Proc of International Symposium on Adaptive Motion of Animals and Machines (AMAM2000), CD-ROM, Montreal Canada, 2000

  64. Fukuoka Y, Kimura H, Cohen A H. Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int J Robot Res, 2003, 22(3–4): 187–202

    Article  Google Scholar 

  65. Acebron J A, Bonilla L L, Vicente C J P, et al. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev Mod Phys, 2005, 77: 137–185

    Article  Google Scholar 

  66. Nakamura Y, Tominaga F, Munakata T. Clustering behavior of time-delayed nearest-neighbor coupling oscillators. Phys Rev, 1994, E 49: 4849–4856

    Google Scholar 

  67. Choi M Y, Kim H J, Kim D. Synchronization in a system of globally coupled oscillators with time delay. Phys Rev, 2000, E 61: 371

    Google Scholar 

  68. Tsimring L S, Rulkov N F, Larsen M L, et al. Repulsive synchronization in an array of phase oscillators. Phys Rev Lett, 2005, 95(1–4): 014101

    Google Scholar 

  69. Ijspeert A J, Crespi A. Online trajectory generation in an amphibious snake robot using a lamprey-like central pattern generator model. In: Proceedings of the IEEE International Conference on Robotics and Automation, Italy, 2007. 262-268

  70. Ijspeert A J, Crespi A, Ryczko D, et al. Cabelguen. From swimming to walking with a salamander robot driven by a spinal cord model. Science, 2007, 315(5817): 1416–1420

    Article  Google Scholar 

  71. Crespi A. Design and control of amphibious robots with multiple degrees of freedom. EPFL, 2007

  72. Conradt J. Distributed central pattern generator control for a serpentine robot. In: Proc of the International Conference on Artificial Neural Networks (ICANN), Istanbul, Turkey, 2003. 338–341

  73. Righetti L, Buchli J, Ijspeert A. Dynamic hebbian learning for adaptive frequency oscillators. Phys D, 2005

  74. Righetti L, Buchli J, Ijspeert A J. From dynamic hebbian learning for oscillators to adaptive central pattern generators. In: Proceedings of the Third International Symposium on Adaptive Motion in Animals and Machines, Ilmenau, Germany, 2005

  75. Righetti L, Ijspeert A J. Programmable central pattern generators: an application to biped locomotion control. In: IEEE International Conference on Robotics and Automation, Orlando, Florida, 2006. 1585–1590

  76. Nicolas J. Artificial evolution of controllers based on nonlinear oscillators for bipedal locomotion. Master’s thesis, EPFL, Switzerland, 2005–2006

  77. Righetti L, Ijspeert A J. Pattern generators with sensory feedback for the control of quadruped locomotion. In: IEEE International Conference on Robotics and Automation, 2008. 819–824

  78. Van der Pol B, Van der Mark J. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Philosoph Mag, 1928, 6(38): 763–775

    Google Scholar 

  79. Rayleigh J W S, Lindsay R B. The Theory of Sound. Vol. 1 New York: Dover Publications, 1945

    Google Scholar 

  80. Bay J S, Hemami H. Modeling of a neural pattern generator with coupled nonlinear oscillator. IEEE Trans Biomed Eng, 1987, 34(4): 297–306

    Article  Google Scholar 

  81. Zielinska T. Coupled oscillators utilized as gait rhythm generators of a two-legged walking machine. Biol Cybern, 1996, 74: 263–273

    MATH  Google Scholar 

  82. de Pina Filho A C, Dutra M S, Raptopoulos L S C. Modeling of a bipedal robot using mutually coupled Rayleigh oscillators. Biol Cybern, 2005, 92: 1–7

    Article  MATH  Google Scholar 

  83. Dutra M S, de Pina Filho A C, Romano V F. Modeling of a bipedal locomotor using coupled nonlinear oscillators of Van der Pol. Biol Cybern, 2003, 88: 286–292

    Article  MATH  Google Scholar 

  84. Shan J, Shi C J, Pin C J. Design of central pattern generator for humanoid robot walking based on multi-objective GA. In: Proc of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000. 3: 1930–1935

    Google Scholar 

  85. Ijspeert A J. A neuromechanical investigation of salamander locomotion. In: Proc of International Symposium on Adaptive Motion of Animals and Machines (AMAM2000), CD-ROM, Montreal Canada, 2000

  86. Ijspeert A J, Hallam J, Willshaw D. Evolving swimming controllers for a simulated lamprey with inspiration from neurobiology. Adapt Behav, 1999, 7(2): 151–172

    Article  Google Scholar 

  87. Ijspeert A J, Kodjabachian J. Evolution and development of a central pattern generator for the swimming of a lamprey. Artif Life, 1999, 5(3): 247–269

    Article  Google Scholar 

  88. Ijspeert A J. A connectionist central pattern generator for the aquatic and terrestrial gaits of a simulated salamander. Biol Cybern, 2001, 84(5): 331–348

    Article  Google Scholar 

  89. Lu Z L, Ma G S, Li B, et al. Serpentine locomotion of a snake-like robot controlled by cyclic inhibitory CPG model. Acta Autom Sin, 2006, 32(1): 133–139

    Google Scholar 

  90. Lu Z, Ma S, Li B, et al. 3D locomotion of a snake-like robot controlled by cyclic inhibitory CPG model. In: Proc 2006 IEEE Int Conf on Intelligent Robotics and System (IROS’06), Beijing: Institute of Electrical and Electronics Inc., 2006. 3897–3902

    Chapter  Google Scholar 

  91. Inoue K, Ma S, Jin C. Neural oscillator network-based controller for meandering locomotion of snake-like robots. In: Proc 2004 IEEE Int Conf on Robotics and Automation (ICRA’04). New Orleans, Louisiana: Institute of Electrical and Electronics Inc., 2004. 5064–5069

    Chapter  Google Scholar 

  92. Inagaki S, Yuasa H, Arai T. CPG model for autonomous decentralized multi-legged robot system-generation and transition of oscillation patterns and dynamics of oscillators. Robot Autonom Syst, 2003, 44(3–4): 171–179

    Article  Google Scholar 

  93. Inagaki S, Yuasa H, Suzuki T, et al. Wave CPG model for autonomous decentralized multi-legged robot: Gait generation and walking speed control. Robot Autonom Syst, 2006, 54(2): 118–126

    Article  Google Scholar 

  94. Delcomyn F. Walking robots and the central and peripheral control of locomotion in insects. Autonom Robot, 1999, 7: 259–270

    Article  Google Scholar 

  95. Beer R D, Chiel H J, Quinn R D, et al. A distributed neural network architecture for hexapod robot locomotion. Neural Comput, 1992, 4: 356–365

    Article  Google Scholar 

  96. Inagaki S, Yuasa H, Suzuki T, et al. Wave CPG model for autonomous decentralized multi-legged robot: Gait generation and walking speed control. Robot Autonom Syst, 2006, 54(2): 118–126

    Article  Google Scholar 

  97. Barnes D. Hexapodal robot locomotion over uneven terrain. IEEE Control Appl, 1998, 1: 441–445

    Google Scholar 

  98. Goldman D I, Chen T S, Dudekand D M, et al. Dynamics of rapid vertical climbing in cockroaches reveals a template. J Exp Biol, 2006, 209(15): 2990–3000

    Article  Google Scholar 

  99. Holmes P, Full R J, Koditschek D, et al. The dynamics of legged locomotion: Models, analyses, and challenges. SIAM Rev, 2006, 48(2): 207–304

    Article  MATH  MathSciNet  Google Scholar 

  100. Ayers J, Witting J. Biomimetic approaches to the control of underwater walking machines. Philos T Roy Soc A, 2007, 365(1850): 273–295

    Article  Google Scholar 

  101. Ayers J, Rulkov N. Controlling biomimetic underwater robots with electronic nervous systems. In: Kato N, Kamimura S, eds. Bio-mechanisms of Swimming and Flying: Fluid Dynamics, Biomimetic Robots, and Sports Science. Berlin: Spring-Verlag, 2008. 295–306

    Google Scholar 

  102. Kimura H, Fukuoka Y, Cohen A H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. Int J Robot Res, 2007, 26(5): 475–490

    Article  Google Scholar 

  103. Kimura H, Tsuchiya K, Ishiguro A, et al. Adaptive Motion of Animals and Machines. Berlin: Springer-Verlag, 2005

    Google Scholar 

  104. Ilg W, Albiez J, Jedele H, et al. Adaptive periodic movement control for the four legged walking machine BISAM. In: IEEE Robotics and Automation. Detroit Michigan, 1999. 2354–2359

  105. Tsujita K, Tsuchiya K, Onat A. Adaptive gait pattern control of a quadruped locomotion robot. In: Proceedings of IEEE/RSJ IROS, Wailes, Hawaii. 2001. 2318–2325

  106. Tsujita K, Tsuchiya K, Onat A. Decentralized autonomous control of a quadrupedal locomotion robot using oscillators. Artif Life Robot, 2001, 5: 152–158

    Article  Google Scholar 

  107. Billard A, Ijspeert A J. Biologically inspired neural controllers for motor control in a quadruped robot. In: Proceedings of the International Joint Conference on Neural Networks. Piscataway, NJ, USA: IEEE, 2000. 637–641

    Google Scholar 

  108. Zhang J Q, Chen Q J. Learning based gaits evolution for an AIBO dog. In: 2007 IEEE Congress on Evolutionary Computation, Sep. 25–28, Singapore, 2007. 1523–1526

  109. Liu C J, Chen Q J, Zhang J Q. Coupled Van der Pol oscillators utilised as central pattern generators for quadruped locomotion. In: Chinese Control and Decision Conference, Guilin, China, 2009

  110. Xu T, Chen Q J. Research and implementation of automatic gait evolution for 4-legged robot. Robot, 2009, 31(1): 72–81

    Google Scholar 

  111. Liu C J, Chen Y F, Zhang J Q, et al. CPG Driven locomotion control of quadruped robot. In: IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, Texas, USA, 2009

  112. Lewis M A, Tenore F, Etienne-Cummings R. CPG design using inhibitory networks. In: Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2005. 3682–3687

    Chapter  Google Scholar 

  113. Tenore F, Vogelstein R J, Cauwenberghs G, et al. A spiking silicon central pattern generator with floating gate synapses. In: Proceedings of the IEEE International Symposium on Circuits and Systems. Piscataway, NJ, USA: IEEE, 2005. 4106–4109

    Chapter  Google Scholar 

  114. Komatsu T, Usui M. Dynamic walking and running of a bipedal robot using hybrid central pattern generator method. In: Proceedings of the IEEE International Conference on Mechatronics and Automation. Piscataway, NJ, USA: IEEE, 2005. 987–992

    Chapter  Google Scholar 

  115. Shan J, Nagashima F. Neural locomotion controller design and implementation for humanoid robot HOAP-1. In: Proc of the 20th Annual Conference of the Robotics Socity of Japan, Osaka Japan, 2002

  116. Morimoto J, Endo G, Nakanishi J, et al. A biologically inspired biped locomotion strategy for humanoid robots: Modulation of sinusoidal patterns by a coupled oscillator model. IEEE Trans Robot, 2008, 24(1): 185–191

    Article  Google Scholar 

  117. Endo G, Nakanishi J, Morimoto J, et al. Experimental studies of a neural oscillator for biped locomotion with QRIO. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005. 598–604

  118. Ijspeert A J. Central pattern generators for locomotion control in animals and robots: A review. Neural Netw, 2008, 21: 642–653

    Article  Google Scholar 

  119. Aoi S, Tsuchiya K. Gait transition from quadrupedal to bipedal locomotion of an oscillator-driven biped robot. In: de Pina Filho, ed. Humanoid Robots, New Developments. ISBN 978-3-902613-02-8, I-Tech, Vienna, Austria, June 2007. 582

  120. Asa K, Ishimura K, Wada M. Behavior transition between biped and quadruped walking by using bifurcation. Robot Autonom Syst, 2009, 57: 155–160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to QiJun Chen.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 60875057), and the National High-Tech Research & Development Program of China (Grant No. 2009AA04Z213)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Liu, C., Zhang, J. et al. Survey of locomotion control of legged robots inspired by biological concept. Sci. China Ser. F-Inf. Sci. 52, 1715–1729 (2009). https://doi.org/10.1007/s11432-009-0169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0169-7

Keywords

Navigation