Skip to main content
Log in

Joint frequency, 2-D DOA, and polarization estimation using parallel factor analysis

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

This paper proposes a new algorithm for joint frequency, two-dimensional (2-D) directions-of-arrival (DOA), and polarization estimation using parallel factor (PARAFAC) analysis model and cumulant. The proposed algorithm designs a new array configuration, and extends the PARAFAC analysis model from the common data-domain and subspace-domain to the cumulant one, and forms three-way arrays by using the three cumulant matrices obtained from the properly chosen dipole outputs, and analyzes the uniqueness of low-rank decomposition of the three-way arrays, and then jointly estimates the source parameters via the low-rank decomposition of the constructed PARAFAC model. In comparison with the conventional methods, the proposed method alleviates the aperture loss, and avoids pairing parameter. Finally, the simulation results are presented to validate the performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhuang Z W, Xu Z H, Xiao S P. Polarization Sensitive Array Signal Processing. Beijing: National Defense Industry Press, 2005

    Google Scholar 

  2. Zhuang Z W, Xiao S P, Wang X S. Radar Polarization Information Processing and Applications. Beijing: National Defense Industry Press, 1999

    Google Scholar 

  3. Johnson R. Antenna Engineering Handbook. 3rd ed. New York: McGraw-Hill, 1993

    Google Scholar 

  4. Lo Y T, Lee S W. Antenna Handbook Theory, Applications, and Design. Newyork: Van Nostrand Reinhold Company, 1988

    Google Scholar 

  5. Balanis C A. Antenna Theory: Analysis and Design. New York: Harper & Row, 1982

    Google Scholar 

  6. Zhang X D. Modern Signal Processing. Beijing: Tsinghua University Press, 1997

    Google Scholar 

  7. Li J, Compton R T. Angle and polarization estimation using ESPRIT with a polarization sensitive array. IEEE Trans Anten Propag, 1991, 39(9): 1376–1383

    Article  Google Scholar 

  8. Li J, Compton R T. Two-dimensional angle and polarization estimation using the ESPRIT algorithm. IEEE Trans Anten Propag, 1992, 40(5): 550–555

    Article  Google Scholar 

  9. Hua Y. A pencil-MUSIC algorithm for finding two-dimensional angles and polarizations using crossed-dipoles. IEEE Trans Anten Propag, 1993, 41(3): 370–375

    Article  Google Scholar 

  10. Cheng Q, Hua Y. Further study of the Pencil-MUSIC algorithm. IEEE Trans Aerospace Electron Syst, 1996, 32(1): 284–301

    Article  Google Scholar 

  11. Wang J Y, Chen T L. Joint frequency, two dimensional arrival angles and the polarizations estimation using an L array. Acta Electron Sin, 1999, 27(11): 74–76

    Google Scholar 

  12. Wang J Y, Chen T L. Joint frequency 2D AOA and polarization estimation using fourth-order cumulants. Sci China Ser E-Tech Sci, 2000, 43(3): 297–303

    Article  Google Scholar 

  13. Wang J Y, Wang J Y, Chen T L. Joint frequency, 2-D AOA and polarization estimation in broad-band. Sci China Ser FInf Sci, 2001, 44(3): 161–167

    Google Scholar 

  14. Zhou Y Z, Chen T L. Angles of arrival and polarizations estimation. Chin J Radio Sci, 1997, 12(2): 220–224

    Google Scholar 

  15. Roy R, Kailath T. ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Trans Acous, Speech Signal Proc, 1989, 37(7): 984–995

    Article  Google Scholar 

  16. Schmidt R. Multiple emitter location and signal parameter estimation. IEEE Tran Anten Propag, 1986, 34(3): 276–280

    Article  Google Scholar 

  17. Liu T H, Mendel J M. Azimuth and elevation direction finding using arbitrary array geometries. IEEE Trans Signal Process, 1998, 46(2): 2061–2065

    Google Scholar 

  18. Dogan M C, Mendel J M. Applications of cumulants to array processing-Part I: aperture extension and array calibration. IEEE Trans Signal Process, 1995, 43(5): 1200–1216

    Article  Google Scholar 

  19. Liang J L. Joint azimuth and elevation direction finding using cumulant. IEEE Sens J, 2009, 9(4): 390–398

    Article  Google Scholar 

  20. Chevalier P, Ferreol A, Albera L. High-resolution direction finding from higher order statistics: the 2q-MUSIC algorithm. IEEE Trans Signal Process, 2006, 54(8): 2986–2997

    Article  Google Scholar 

  21. Zhang X D. Time Series Analysis: Higher Order Statistics Methods. Beijing: Tsinghua University Press, 1996

    Google Scholar 

  22. Chevalier P, Albera L, Comon P. On the virtual array concept for higher order array processing. IEEE Trans Signal Process, 2005, 53(4): 1254–1271

    Article  MathSciNet  Google Scholar 

  23. Mendel J M. Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proc IEEE, 1991, 79(3): 278–305

    Article  Google Scholar 

  24. Wang Y L, Chen H, Peng Y N, et al. Spatial Spectrum Estimation Theory and Algorithm. Beijing: Tsinghua University Press, 2004

    Google Scholar 

  25. Bro R. PARAFAC: Tutorial and applications. Chemom Intell Lab Syst, 1997, 38(2): 149–171

    Article  Google Scholar 

  26. Cattell R B. Parallel proportional profiles and other principles for determining the choice of factors by rotation. Psychometrika, 1944, (9): 267–283

    Article  Google Scholar 

  27. Harshman R A. Foundation of the PARAFAC procedure: Model and conditions for an ‘explanatory’ multi-mode factor analysis. UCLA Working Papers in Phonetics, 1970, 16: 1–84

    Google Scholar 

  28. Carroll J D, Chang J. Analysis of individual differences in multidimensional scaling via an N-way generalization of ‘Eckart-Young’ decomposition. Psychometrika, 1970, 35(3): 283–

    Article  MATH  Google Scholar 

  29. Sidiropoulos N D, Giannakis G B, Bro R. Blind PARAFAC receivers for DS-CDMA systems. IEEE Trans Signal Process, 2000, 48(3): 810–823

    Article  Google Scholar 

  30. Sidiopoulos N D, Bro R, Giannakis G B. Parallel factor analysis in sensor array processing. IEEE Trans Signal Process, 2000, 48(8): 2377–2388

    Article  Google Scholar 

  31. Rong Y, Vorobyov S A, Gershman A B, et al. Blind spatial signature estimation via time-varying user power loading and parallel factor analysis. IEEE Trans Signal Process, 2005, 53(5): 1697–1710

    Article  MathSciNet  Google Scholar 

  32. Kruskal J B. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl, 1977, 18: 95–138

    Article  MATH  MathSciNet  Google Scholar 

  33. Kruskal J B. Rank Decomposition, and Uniqueness for 3-way and N-way Arrays. Multiway Data Analysis: Coppi R, Bolasco S, eds. Amsterdam: North-Holland, 1988. 7–18

    Google Scholar 

  34. Jiang T, Sidiropouls N D. Kruskal’s permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints. IEEE Trans Signal Process, 2004, 52(9): 2625–2636

    Article  MathSciNet  Google Scholar 

  35. Smilde A, Bro R, Geladi P. Multi-way Analysis with Applications in the Chemical Sciences. New York: John Wiley & Sons Ltd, 2004

    Book  Google Scholar 

  36. Tomasi G. Practical and computational aspects in chemometric data analysis. PhD thesis. Frederikcberg, Denmark: the Royal Veterinary and Agriculture University, 2006. http://www.models.kvl.dk/research/theses/.

    Google Scholar 

  37. Liang J L, Yang S Y, Zhang J Y, et al. 4-D near-field source localization using cumulant. EURASIP J Adv Signal Process, 2007, 2007: 1–10

    MathSciNet  Google Scholar 

  38. Liang J L, Wang S J, Gao L, et al. A novel near-field source localization algorithm without pairing parameters. Acta Electron Sin, 2007, 35(6): 1122–1127

    Google Scholar 

  39. Liang J L, Yang S Y, Zhang J Y. A cumulant-based parameter estimation algorithm for near-field sources. Prog in Nat Sci, 2007, 17(8): 900–905

    Article  Google Scholar 

  40. Cai Y, Ni Y. Simultaneous synchronous spectrofluorimetric determination of vitamin B1, B2 and B6 using parallel factor analysis. J Guangxi Norm Univ (Nat Sci Ed). 2003, 21(2): 312–313

    Google Scholar 

  41. Sidiropoulos N D. COMFAC: Matlab code for LS fitting of the complex PARAFAC model in 3-D. 1998, http://www.telecom.tuc.gr/~nikos

  42. Liao G S, Bao Z. Blind estimates of angle-doppler frequency for fluctuating targets signals via new rotational invariance techniques. Acta Electron Sin, 1996, 24(12): 6–11

    Google Scholar 

  43. Chen J F, Zhu X L, Zhang X D. A new algorithm for joint range-DOA-frequency estimation of near-field sources. EURASIP J Appl Signal Process, 2004, 4(3): 386–392

    MathSciNet  Google Scholar 

  44. Liang J L. 4-D parameter estimation of narrowband sources based on parallel factor analysis. Chinese Sci Bull, 2008, 53(4): 2239–2247

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JunLi Liang.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 60901059/F0103), the Educational Department Foundations of Shaanxi Province (Grant No. 09JK629), and the Doctor Research Start Fund of Xi’an University of Technology (Grant No. 116-210903)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, J., Liu, D. & Zhang, J. Joint frequency, 2-D DOA, and polarization estimation using parallel factor analysis. Sci. China Ser. F-Inf. Sci. 52, 1891–1904 (2009). https://doi.org/10.1007/s11432-009-0171-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0171-0

Keywords

Navigation