Skip to main content
Log in

Controllability of multi-agent systems based on agreement protocols

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the controllability of multi-agent systems based on agreement protocols. First, for a group of single-integrator agents, the controllability is studied in a unified framework for both networks with leader-following structure and networks with undirected graph. Some new necessary/sufficient conditions for the controllability of networks of single-integrator agents are established. Second, we prove that, under the same topology and same prescribed leaders, a network of high-order dynamic agents is completely controllable if and only if so is a network of single-integrator agents. Third, how the selection of leaders and the coupling weights of graphs affect the controllability is analyzed. Finally, some numerical simulations are presented to demonstrate the effectiveness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reynolds C W. Flocks, herds, and schools: a distributed behavioral model. Comput Graph, 1987, 21(4): 25–34

    Article  MathSciNet  Google Scholar 

  2. Gazi V, Passino K M. Stability analysis of swarms. IEEE Trans Automat Contr, 2003, 48(4): 692–697

    Article  MathSciNet  Google Scholar 

  3. Xiao L, Boyd S, Lall S. A scheme for asynchronous distributed sensor fusion based on average consensus. In: Proc Int Conf Information Processing in Sensor Networks, Los Angeles, CA, 2005. 63–70

  4. Shi H, Wang L, Chu T G. Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions. Physica D, 2006, 213(1): 51–65

    Article  MATH  MathSciNet  Google Scholar 

  5. Tanner H G, Jadbabaie A, Pappas G J. Stable flocking of mobile agents, part I: fixed topology. In: Proc IEEE Conf Decision and Control, Maui, Hawaii USA, 2003. 2010–2015

  6. Lee D, Spong M W. Stable flocking of multiple inertial agents on balanced graphs. IEEE Trans Automat Contr, 2007, 52(8): 1469–1475

    Article  MathSciNet  Google Scholar 

  7. Tanner H G, Pappas G J, Kumar V. Leader-to-formation stability. IEEE Trans Robot Autom, 2004, 20(3): 433–455

    Article  Google Scholar 

  8. Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Trans Automat Contr, 2004, 49(9): 1465–1476

    Article  MathSciNet  Google Scholar 

  9. Lafferriere G, Wolliams A, Caughman J, et al. Decentralized control of vehicle formations. Syst Contr Lett, 2005, 54(9): 899–910

    Article  MATH  Google Scholar 

  10. Egerstedt M, Hu X. Formation constrained multi-agent control. IEEE Trans Robot Autom, 2001, 17(6): 947–951

    Article  Google Scholar 

  11. Cortés J, Martínez S, Bullo F. Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions. IEEE Trans Automat Contr, 2006, 51(8): 1289–1298

    Article  Google Scholar 

  12. Lin J, Morse A S, Anderson B D O. The multi-agent rendezvous problem-the asynchronous case. In: Proc IEEE Conf Decision and Control, Atlantis, Paradise Island, Bahamas, 2004. 1926–1930

  13. Olfti-Saber R, Murray R M. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Automat Contr, 2004, 49(9): 1520–1533

    Article  Google Scholar 

  14. Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans Automat Contr, 2005, 50(5): 655–661

    Article  MathSciNet  Google Scholar 

  15. Moreau L. Stability of multiagent systems with timedependent communication links. IEEE Trans Automat Contr, 2005, 50(2): 169–182

    Article  MathSciNet  Google Scholar 

  16. Jadbabaie A, Lin J, Morse A S. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans Automat Contr, 2003, 48(6): 988–1001

    Article  MathSciNet  Google Scholar 

  17. Moore K L, Lucarelli D. Decentralized adaptive scheduling using consensus variables. Int J Robust Nonlin, 2007, 17: 921–940

    Article  MathSciNet  Google Scholar 

  18. Xie G M, Wang L. Consensus control for a class of networks of dynamic agents. Int J Robust Nonlin, 2007, 17(10–11): 941–959

    Article  MathSciNet  Google Scholar 

  19. Ren W, Atkins E M. Distributed multi-vehicle coordinated control via local information exchange. Int J Robust Nonlin, 2007, 17(10–11): 1002–1033

    Article  MathSciNet  Google Scholar 

  20. Ren W. On consensus algorithms for double-integrator dynamics. In: Proc IEEE Conf Decision and Control, New Orleans, LA, USA, 2007. 2295–2300

  21. Tanner H G. On the controllability of nearest neighbor interconnections. In: Proc IEEE Conf Decision and Control, Atlantis, Paradise Island, Bahamas, 2004. 2467–2472

  22. Rahmani A, Mesbahi M. On the controlled agreement problem. In: Proc Amer Contr Conf, Minneapolis, Minnesota, USA, 2006. 1376–1381

  23. Liu B, Chu T G, Wang L, et al. Controllability of a leaderfollower dynamic network with switching topology. IEEE Trans Automat Contr, 2008, 53(4): 1009–1013

    Article  MathSciNet  Google Scholar 

  24. Ji Z J, Lin H, Lee T H. A graph theory based characterization of controllability for multi-agent systems with fixed topology. In: Proc IEEE Conf Decision and Control, Mexico, USA, 2008. 5262–5267

  25. Ji M, Muhammad A, Egerstedt M. Leader-based multi-agent coordination: controllability and optimal control. In: Proc Amer Contr Conf, Minneapolis, 2006. 1358–1363

  26. Ji M, Egerstedt M. A graph theoretic characterization of controllability for multi-agent systems. In: Proc Amer Contr Conf. New York, USA, 2007. 11–13

  27. Kalman R E. Mathematical description of linear dynamical systems. SIAM J Contr, 1963, 1(2): 152–192

    MATH  MathSciNet  Google Scholar 

  28. Godsil C, Royle G. Algebraic Graph Theory. New York: Springer-Verlag, 2001. 193–195

    MATH  Google Scholar 

  29. Ren W, Moore K, Chen Y Q. High-Order and Model Reference Consensus Algorithms in Cooperative Control of Multi-Vehicle Systems. J Dyn Syst-T ASME, 2007, 129(5): 678–688

    Article  Google Scholar 

  30. Jiang F C, Wang L, Jia Y M. Consensus problems for leaderless networks of high-order-integrator agents. In: Proc Amer Contr Conf, St. Louis, Missouri, USA, 2009. 4458–4463

  31. Sontag E D. Mathematical control theory: deterministic finite dimensional systems. New York: Springer-Verlag, 1990. 137–145

    MATH  Google Scholar 

  32. Lin C T. Structural controllability. IEEE Trans Automat Contr, 1974, AC-19: 201–208

    Article  MATH  Google Scholar 

  33. Heymann M, Wonham W. Comments: on pole assignment in multi-input controllable linear systems. IEEE Trans Automat Contr, 1968, 13(6): 748–749

    Article  Google Scholar 

  34. Mayeda H. On structural controllability theorem. IEEE Trans Automat Contr, 1981, AC-26(3): 795–798

    Article  MathSciNet  Google Scholar 

  35. Hu J P, Hong Y G. Leader-following coordination of multiagent systems with coupling time delays. Physica A, 2007, 374(2): 853–863

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Wang.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 60674050, 60736022, 10972002, 60774089), and the 11-5 Project (Grant No. A2120061303)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Jiang, F., Xie, G. et al. Controllability of multi-agent systems based on agreement protocols. Sci. China Ser. F-Inf. Sci. 52, 2074–2088 (2009). https://doi.org/10.1007/s11432-009-0185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0185-7

Keywords

Navigation