Skip to main content
Log in

Embedded DHT overlays in virtual computing environments

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

With the rapid development of computing and networking technologies, people propose to build harmonious, trusted and transparent Internet-based virtual computing environments (iVCE). The overlay-based organization of dynamic Internet resources is an important approach for iVCE to realizing efficient resource sharing. DHT-based overlays are scalable, low-latency and highly available; however, the current DHT overlay (SKY) in iVCE cannot satisfy the “trust” requirements of Internet applications. To address this problem, in this paper we modify SKY and propose TrustedSKY, an embedded DHT overlay technique in iVCE which supports applications to select trusted nodes to form a “trusted subgroup” in the base overlay and realize secure and trusted DHT routing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu X C, Wang H M, Wang J. Internet-based virtual computing environments (iVCE): Concepts and architecture. Sci China Ser F-Inf Sci, 2006, 49: 681–701

    Article  MathSciNet  Google Scholar 

  2. Stephanos A T, Diomidis S. A survey of peer-to-peer content distribution technologies. ACM Comput Surv, 2004, 36: 335–371

    Article  Google Scholar 

  3. Zhang Y M, Lu X C, Li D S. SKY: An efficient Peer-to-Peer network based on Kautz graphs. Sci China Ser F-Inf Sci, 2009, 52: 588–601

    Article  MATH  Google Scholar 

  4. Trusted Computing Group. TCG specification architecture overview [EB/OL]. [2005-03-01]. https://www.trustedcomputinggroup.org

  5. Lin C, Peng X H. Research on trustworthy networks (in Chinese). J Comput, 2005, 28: 751–758

    Google Scholar 

  6. Shen C X, Zhang H G, Feng D G, et al. Survey of information security. Sci China Ser F-Inf Sci, 2007, 50: 273–298

    Article  MATH  Google Scholar 

  7. Fan S Q, Han W B. Random properties of the highest level sequences of primitive sequences over Z 2 e. IEEE Trans Inf Theory, 2003, 49: 1553–1557

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhang H G, Feng X T, Tan Z P, et al. Research on evolutionary cryptosystems and evolutionary DES (in Chinese). J Comput, 2003, 26: 1678–1684

    Google Scholar 

  9. Patel J, Luke T W T, Jennings N R, et al. A probabilistic trust model for handling inaccurate reputation sources. In: Proceedings of Trust Management (iTrust), Paris, France, 2005. 193–209

  10. Tague P, Slater D, Rogers J, et al. Evaluating the vulnerability of network traffic using joint security and routing analysis. IEEE Trans Depend Secure, 2009, 6: 111–123

    Article  Google Scholar 

  11. Karger D R, Ruhl M. Diminished chord: A protocol for heterogeneous subgroup formation in peer-to-peer networks. In: Proceedings of IEEE IPTPS, La Jolla, CA, USA, 2004. 288–297

  12. Zhang Y M, Chen L, Lu X C, et al. Enabling routing control in a DHT. IEEE J Sel Area Comm, 2010, 28: 1–11

    Article  MATH  Google Scholar 

  13. Fiol M A, Llado A S. The partial line digraph technique in the design of large interconnection networks. IEEE Trans Comput, 1992, C-41: 848–857

    Article  MathSciNet  Google Scholar 

  14. Kautz W H. The design of optimum interconnection networks for multiprocessors. Architecture and design of Digital computer. NATO advances summer Institute, 1969. 249–277

  15. Yalagandula P, Dahlin M. A scalable distributed information management system. In: Proceedings of ACM SIGCOMM, Portland, DR, USA, 2004. 379–390

  16. Rowstron A I T, Druschel P. Pastry: Scalable, decentralized object location, and routing for large-scale peer-to-peer systems. In: Middleware, Heidelberg, Germany, 2001. 329–350

  17. Harvey N J A, Jones M B, Saroiu S, et al. Skipnet: A scalable overlay network with practical locality properties. In: Proceedings of USENIX Symposium on Internet Technologies and Systems, Seattle, WA, USA, 2003

  18. Mislove A, Druschel P. Providing administrative control and autonomy in structured peer-to-peer overlays. In: Proceedings of IPTPS, La Jolla, CA, USA, 2004. 162–172

  19. Ganesan P, Gummadi P K, Molina H G. Canon in G major: Designing DHTs with hierarchical structure. In: Proceedings of IEEE ICDCS, Tokyo, Japan, 2004. 263–272

  20. Stoica I, Morris R, Nowell D L, et al. Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans Netw, 2003, 11: 17–32

    Article  Google Scholar 

  21. Zhao B Y, Huang L, Stribling J, et al. Tapestry: a resilient global-scale overlay for service deployment. IEEE J Sel Area Comm, 2004, 22: 41–53

    Article  Google Scholar 

  22. Walsh K, Sirer E G. Experience with an object reputation system for peer-to-peer file-sharing. In: Proceedings of USENIX NSDI, San Jose, CA, USA, 2006

  23. Vlachou A, Doulkeridis C, Norvag K, et al. On efficient top-k query processing in highly distributed environments. In: Proceedings of ACM SIGMOD, Vancouver, BC, Canada, 2008

  24. Wang S Y, Ooi B C, Tung A K H, et al. Efficient skyline query processing on peer-to-peer networks. In: Proceedings of IEEE ICDE, Istanbul, Turkey, 2007

  25. Bawa M, Condie T, Ganesan P. LSH forest: self-tuning indexes for similarity search. In: Proceedings of WWW, Chiba, Japan, 2005. 651–660

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiMing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Lu, X. & Li, D. Embedded DHT overlays in virtual computing environments. Sci. China Inf. Sci. 53, 483–493 (2010). https://doi.org/10.1007/s11432-010-0034-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-0034-8

Keywords

Navigation