Skip to main content
Log in

A survey on impulse-radio UWB localization

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Impulse radio ultra-wideband (IR-UWB) technique has good performance in the application of high-precision localization since it possesses unique properties such as large instantaneous bandwidth and high time resolution. Making IR-UWB localization technology a growing hot topic in recent research field, therefore, it is necessary for us to give an overview of it in this paper. The TOA estimation, error analysis, NLOS identification and NLOS localization are studied in details based on the ranging methods. Simultaneously the UWB localization applications and practical problems are pointed out. At last, we outline the challenges for further research of IR-UWB localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Win M Z, Scholtz R A. Impulse radio: how it works. IEEE Commun Lett, 1998, 2: 36–38

    Article  Google Scholar 

  2. Roy S, Foerster J R, Somayazulu V S, et al. Ultrawideband radio design: the promise of high-speed short-range wireless connectivity. IEEE Proceed, 2004, 92: 295–311

    Article  Google Scholar 

  3. Scholtz R A. Multiple access with time-hopping impulse modulation. In: MILCOM Proceeding, MILCOM1993, Bedford, MA, USA, 1993. 447–450

  4. Zhuang W H, Shen X M, Bi Q. Ultra-wideband wireless communications. Wirel Commun Mobile Comput, 2003, 3: 663–685

    Article  Google Scholar 

  5. Scholtz R A, Pozar D, Won N. Ultra-Wideband Radio. EURASIP J Appl Signal Process, 2005, 3: 252–272

    Google Scholar 

  6. Yang L Q, Giannakis G B. Ultra-wideband communications an idea whose time has come. IEEE Signal Process Mag, 2005, 11: 26–54

    Google Scholar 

  7. First Report and Order in the Matter of Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wideband Transmission Systems, FCC, released, ET Docket 98-153, FCC 02-48. 2002

  8. Foerster J. Channel Modeling Sub-committee Report Final. IEEE P802.15-02/368r5-SG3a, 2002

  9. Special Issue on ultra wideband radio technology (in Chinese). J Commun, 2005, 26: 1–154

    Google Scholar 

  10. Ge L J, Zeng F X, Liu Y L, et al. Ultra Wide Band Wireless Communications (in Chinese). Beijing: National Defense Industry Press, 2005. 8

    Google Scholar 

  11. Zhang Z Z, Sha X J, Zhang N T. Ultra Wideband Radio Technology (in Chinese). Beijing: Publishing House of Electronics industry, 2005. 9

    Google Scholar 

  12. Molisch A F, Balakrishnan K, Chong C C. IEEE 802.15.4a channel model-final report [EB/OL]. 2005.3. http://www.ieee802.org/15/pub/TG4a.html.

  13. Patwari N, Joshua N A, Kyperountas S. Locating the nodes-cooperative localization in wireless sensor networks. IEEE Signal Process Mag, 2005, 22: 54–69

    Article  Google Scholar 

  14. Fontana R J. Recent system applications of short-pulse ultra-wideband (UWB) technology. IEEE Trans Microw Theory, 2004, 52: 2087–2104

    Article  Google Scholar 

  15. Gezici S, Tian Z, Giannakis G B, et al. Localization via ultra-wideband radios—A look at positioning aspects of future sensor networks. IEEE Signal Process Mag, 2005, 22: 70–84

    Article  Google Scholar 

  16. Wu S H, Zhang N T. Research on accurate ranging of UWB under indoor environments (in Chinese). J Commun, 2007, 28: 65–71

    Google Scholar 

  17. Lee J Y, Scholtz R A. Ranging in a dense multipath environment using a UWB radio link. IEEE J Select Areas Commun, 2002, 20: 1677–1683

    Article  Google Scholar 

  18. Guvenc I, Sahinoglu Z. TOA estimation with different IR-UWB transceiver types. In: 2005 IEEE International Conference on Ultra-Wideband (ICUWB), Zurich, Switzerland, 2005. 426–431

  19. Alavi B, Pahlavan K. Modeling of the TOA-based distance measurement error using UWB indoor radio measurements. IEEE Commun Lett, 2006, 10: 275–277

    Article  Google Scholar 

  20. Cassioli D, Win M Z, Vatalaro F. Low complexity rake receivers in ultra-wideband channels. IEEE Trans Wirel Commun, 2007, 6: 1265–1275

    Article  Google Scholar 

  21. Guvenc I, Chong C C, Watanabe F. NLOS identification and mitigation for UWB localization systems. In: Wireless Commun Networking Conference, WCNC’07, Hong Kong, 2007. 1573–1578

  22. Qi Y. Wireless geolocation in a non-line-of-sight environment. PH.D thesis. Princeton University, 2003

  23. Guvenc I, Sahinoglu Z, Orlik P V. TOA estimation for IR-UWB systems with different transceiver types. IEEE Trans Microw Theory, 2006, 54: 1876–1886

    Article  Google Scholar 

  24. Chung W C, Ha D S. An accurate ultra wideband (UWB) ranging for precision asset location. In: IEEE Conference on Ultra Wideband Systems and Technologies, UWBST2003, Reston, Virginia, USA, 2003. 389–393

  25. Saeed R A, Khatun S. Performance of ultra-wideband time-of-arrival estimation enhanced with synchronization scheme. ECTI Trans Electr Eng Electron Commun, 2006, 4: 78–84

    Google Scholar 

  26. Stoica L, Rabbachin A, Oppermann I. A low-complexity noncoherent IR-UWB transceiver architecture with TOA estimation. IEEE Trans Micro Theory, 2006, 54: 1637–1646

    Article  Google Scholar 

  27. Guvenc I, Sahinoglu Z. Threshold-based TOA estimation for impulse radio UWB systems. In: IEEE International Conference on Ultra-Wideband. Zurich, Switzerland, 2005. 420–425

  28. Stoica L, Oppermann I. Modeling and simulation of a non-coherent IR UWB transceiver architecture with ToA estimation. In: IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC’06, Helsinki, Finland, 2006. 1–5

  29. Gezici S. Design and analysis of impulse radio ultra wideband receivers for communications and geolocation. PH.D thesis. Princeton University, 2006

  30. Wu S H, Zhang N T. A two-step TOA estimation method for UWB based wireless sensor networks (in Chinese). J Software, 2007, 18: 1164–1172

    Article  Google Scholar 

  31. Rabbachin A, Oppermann I, Denis B. ML time-of arrival estimation based on low complexity UWB energy detection. In: International Conference on Ultra-Wideband, ICUWB’06, Waltham, Mass, USA, 2006. 598–604

  32. Cardinali R, Nardis L D, Benedetto M. UWB ranging accuracy in high- and low-data-rate applications. IEEE Trans Micro Theory, 2006, 54: 1865–1875

    Article  Google Scholar 

  33. Steven M K. Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory/Volume II: Detection Theory. Prentice Hall PTR, 2003. 8

  34. Xu J, Ma M D, Law C L. Position estimation using UWB TDOA measurements. In: International Conference on Ultra-Wideband, ICUWB’06, Waltham, Mass, USA, 2006. 605–610

  35. Sun L M, Li J Z, Chen Y, et al. Wireless Sensor Network (in Chinese). Beijing: Tsinghua University Press, 2005. 5

    Google Scholar 

  36. Qi Y, Kobayashi H. On relation among time delay and signal strength based geolocation methods. In: Proc in IEEE Global Telecommunications Conf. GLOBECOM’03, San Francisco, CA. 2003. 7: 4079–4083

    Google Scholar 

  37. Sahinoglu Z, Catovic A. A hybrid location estimation scheme (H-LES) for partially synchronized wireless sensor networks. In: IEEE International Conf Communications, ICC2004, Paris, France. 2004, 7: 3797–3801

    Google Scholar 

  38. Subramanian A. UWB linear quadratic frequency domain frequency invariant beamforming and angle of arrival estimation. In: Vehicular Technology Conference. Dublin, Ireland, 2007. 614–618

  39. Iwakiri N, Kobayashi T. Joint TOA and AOA estimation of UWB signal using time domain smoothing. Wirel Pervasive Comput, 2007, ISWPC’07: 120–125

  40. Navarro M, Najar M. TOA and DOA estimation for positioning and tracking in IR-UWB. In: International Conference on Ultra-Wideband, ICUWB’07, Singapore, 2007. 574–579

  41. Wann C D, Chin H C. Hybrid TOA/RSSI wireless location with unconstrained nonlinear optimization for indoor UWB channels. In: Wireless Communication and Networking Conference. WCNC 2007, Hong Kong, 2007. 3943–3948

  42. Feng K T, Chen C L, Chen C H. GALE: An enhanced geometry-assisted location estimation algorithm for NLOS environments. IEEE Trans Mobile Comput, 2008, 7: 199–213

    Article  Google Scholar 

  43. Schroeder J, Galler S, Kyamakya K. NLOS detection algorithms for ultra-wideband localization. In: The 4th Workshop on Positioning, Navigation and Communication. WPNC2007. Hannover, Germany, 2007. 159–166

  44. Wann C D, Hsueh C S. NLOS mitigation with biased Kalman filters for range estimation in UWB systems. In: TENCON 2007, Taipei, Taiwan, 2007. 1–4

  45. Lee J Y, Yoo S. Large error performance of UWB ranging in multipath and multiuser environments. IEEE Trans Microw Theory, 2006, 54: 1887–1895

    Article  Google Scholar 

  46. Ahmad S J, Sedki M, Riad A M. Ultra-wideband propagation measurements and channel modeling. DARPA NETEX Program. Report on Through-the-wall propagation and material characterization[EB/OL] Nov. 2002. http://www.darpa.mil/ato/solicit/netex/docs/models.pdf

  47. HeiDari M, Pahlavan K. A new statistical model for the behavior of ranging errors in TOA-based indoor localization. In: Wireless Communications and Networking Conference, WCNC’07, Hong Kong, 2007. 2566–2571

  48. Borras J, Hatrack P, Mandayam N. Decision theoretic framework for NLOS identification. In: 48th IEEE Vehicular Technology Conference, Ottawa, Canada, 1998, 2: 1583–1587

    Google Scholar 

  49. Guvenc I, Chong C C, Watanabe F. NLOS identification and weighted least squares localization for UWB systems using multipath channel statistics. EURASIP J Adv Signal Process, 2007, 1: 1–14

    Google Scholar 

  50. Gezici S, Kobayashi H. Nonparametric nonline-of-sight identification. In: Vehicular Technology Conference, VTC2003-Fall, Orlando, Florida, USA, 2003. 2544–2548

  51. Li C, Zhuang W H. Nonline-of-sight error mitigation in mobile location. IEEE Trans Wirel Commun, 2005, 4: 560–573

    Article  Google Scholar 

  52. Benedetto F, Giunta G, Toascano A. Dynamic LOS/NLOS statistical discrimination of wireless mobile channels. In: Vehicular Technology Conference, VTC2007-Spring, Dublin, Ireland, 2007. 3071–3075

  53. Guvenc I, Sahinoglu Z. Threshold selection for UWB TOA estimation based on Kurtosis analysis. IEEE Commun Lett, 2005, 9: 1025–1027

    Article  Google Scholar 

  54. Xiao Z, Yu Q, Yi K C, et al. Research on localization scheme of UWB in NLOS environment (in Chinese). J Commun, 2008, 29: 1–7

    Google Scholar 

  55. Al-Jazzar S, Caffery J, You H R. Scattering-model-based methods for TOA location in NLOS environments. IEEE Trans Veh Tech, 2007, 56: 583–593

    Article  Google Scholar 

  56. Stoica L, Rabbachin A, Repo H O, et al. An ultrawideband system architecture for Tag based wireless sensor networks. IEEE Trans Veh Tech, 2005, 54: 1632–1645

    Article  Google Scholar 

  57. Xiao L, Greenstein L J, Mandayam N B. Sensor-assisted localization in cellular systems. IEEE Trans Wireless Commun, 2007, 6: 4244–4248

    Article  Google Scholar 

  58. Schroeder J, Stefan G. Three-dimensional indoor localization in non line of sight UWB channels. In: International Conference on Ultra-Wideband, ICUWB’07, 2007. 89–93

  59. Denis B, Pierrot J B, Abou-Rjeily C. Joint distributed synchronization and positioning in UWB Ad Hoc networks using TOA. IEEE Trans Microw Theory, 2006, 54: 1896–1911

    Article  Google Scholar 

  60. Zhen B, Li H B, Kohno R. Clock management in ultra-wideband ranging. In: 16th IST Mobile and Wireless Communications Summit, Budapest, Hungary, 2007. 1–5

  61. Kang D, Namgoong Y, Yang S. A simple asynchronous UWB position location algorithm based on single round-trip transmission. In: The 8th International Conference Advanced Communication Technology. ICACT 2006, Gangwon-Do, Korea (South). 2006. 1458–1461

  62. Hussain M G M. Ultra-wideband impulse radar—An overview of the principles. IEEE Aerosp Electron Syst Mag, 1998, 13: 9–14

    Article  Google Scholar 

  63. Chen Y, Gunawan E, Kim Y. UWB microwave imaging for breast cancer detection: tumor/clutter identification using a time of arrival data fusion method. In: Antennas and Propagation Society International Symposium 2006, Albuguerque, New Mexico, USA, 2006. 255–258

  64. Ni J, Arndt D, Ngo P. UWB tracking system design for free-flyers. In: Space 2004 Conference and Exhibit, AIAA. San Diego, California, 2004. 1–9

  65. Keller C M, Young D P. Ultra-wideband (UWB) signal localization using a vehicle-sized array. In: IEEE International Conference on Ultra-Wideband. Zurich, Switzerland. 2005. 290–295

  66. Talom F, Denis B, Daniele N. UWB positioning experiment in a typical snowy environment. In: The 4th Workshop on Positioning, Navigation and Communication. WPNC2007. Hannover, Germany, 2007. 65–70

  67. Chehri A, Fortier P. Geolocation for UWB Networks in underground mines. In: Wireless and Microwave Technology Conference, WAMICON’06. Clearwater Beach, FL, 2006. 1–4

  68. Cheong P, Rabbachin J M, Yu K. Synchronization, TOA and position estimation for low-complexity LDR UWB devices. In: IEEE International Conference on Ultra-Wideband. Zurich, Switzerland. 2005. 480–484

  69. Angelis A D, Dionigi M. A low-cost ultra-wideband indoor ranging technique. In: IEEE Instrumentation and Measurement Technology Conference. Warsaw, Poland, 2007. 1–6

  70. Yu K, Guo Y J. Improved positioning algorithms for nonline-of-sight environments. IEEE Trans Veh Tech, 2008, 57: 2342–2353

    Article  Google Scholar 

  71. Witrisal K, Pausini M. Statistical analysis of UWB channel correlation functions. IEEE Trans Veh Tech, 2008, 57: 1359–1373

    Article  Google Scholar 

  72. Luo Z Q, Wei Y. An introduction to convex optimization for communications and signal processing. IEEE J Select Areas Communi, 2006, 24: 1–13

    Google Scholar 

  73. Chong C C, Watanabe F, Win M Z. Effect of bandwidth on UWB ranging error. In: Wireless Communications and Networking Conference, WCNC’07, Hong Kong, 2007. 1561–1566

  74. Celebi H, Arslan H. Cognitive positioning systems. IEEE Trans Wirel Commun, 2007, 6: 4475–4483

    Article  Google Scholar 

  75. Xu H, Yang L Q. Ultra-wideband technology: Yesterday, today, and tomorrow. In: Radio and Wireless Symposium. Orlando, Florida, USA, 2008. 715–718

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Z., Hei, Y., Yu, Q. et al. A survey on impulse-radio UWB localization. Sci. China Inf. Sci. 53, 1322–1335 (2010). https://doi.org/10.1007/s11432-010-3102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-3102-1

Keywords

Navigation