Skip to main content
Log in

Robust adaptive backstepping control for a class of uncertain nonlinear systems based on disturbance observers

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, a novel robust adaptive control scheme for a class of uncertain nonlinear systems is proposed using disturbance observer and backstepping method. Firstly, a disturbance observer is developed using radial basis function (RBF) neural network. The parameter updated law of the RBF neural network is given for monitoring subsystem disturbance well. The robust adaptive control scheme is then presented with backstepping method based on the designed disturbance observer. Semiglobal uniform ultimate boundedness (SGUUB) of all signals in the closed-loop uncertain nonlinear system is achieved. The closed-loop system stability analysis shows that semiglobal uniform boundedness of all signals is guaranteed by appropriately choosing design parameters. Finally, two examples are taken to illustrate the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Euntai K A. Fuzzy disturbance observer and its application to control. IEEE Trans Fuzzy Syst, 2002, 10: 77–85

    Article  Google Scholar 

  2. Chen W H, Ballance D J, Gawthrop P J, et al. Nonlinear disturbance observer for two-link robotic manipulators. IEEE Trans Indust Electron, 2000, 47: 932–938

    Article  Google Scholar 

  3. Huang Y H, Messner W. Novel disturbance observer design for magnetic hard drive servo system with a rotary actuator. IEEE Trans Magnet, 1998, 34: 1892–1894

    Article  Google Scholar 

  4. Chen W H. Nonlinear disturbance observer enhanced dynamic inversion control of missiles. J Guid Control Dynam, 2003, 26: 161–166

    Article  Google Scholar 

  5. Wang J, Gao H Q, Li H Y. Adaptive robust control of nonholonomic systems with stochastic disturbances. Sci China Ser F-Inf Sci, 2006, 49: 189–207

    Article  MATH  MathSciNet  Google Scholar 

  6. Haddad W M, Hayakawa T, Chellaboina V. Robust adaptive control for nonlinear uncertain systems. Automatica, 2003, 39: 551–556

    Article  MATH  MathSciNet  Google Scholar 

  7. Elmali H, Olgac N. Robust output tracking control of nonlinear MIMO systems via sliding mode technique. Automatica, 1992, 28: 145–151

    Article  MathSciNet  Google Scholar 

  8. Byungkook Y, Woonchul H. Adaptive fuzzy sliding mode control of nonlinear system. IEEE Trans Fuzzy Syst, 1998, 6: 315–321

    Article  Google Scholar 

  9. Chen M, Jiang C S, Wu Q X. Robust adaptive control of uncertain time delay systems with FLS. Int J Innovat Comput, Inf Control, 2008, 4: 1551–1561

    Google Scholar 

  10. Zhang T, Ge S S, Hang C C. Adaptive neural network control for strict feedback nonlinear systems using backstepping design. Automatica, 2000, 36: 1835–1846

    MATH  MathSciNet  Google Scholar 

  11. Ge S S, Wang J. Robust adaptive tracking for time varying uncertain nonlinear systems with unknown control coefficients. IEEE Trans Automat Control, 2003, 48: 1463–1469

    Article  MathSciNet  Google Scholar 

  12. Kim K S, Kim Y D. Robust Backstepping control for slew maneuver using nonlinear tracking function. IEEE Trans Control Syst Tech, 2003, 11: 822–829

    Article  Google Scholar 

  13. Marino R, Respondek W, Schaft A J. Nonlinear almost disturbance decoupling. Syst Control Lett, 1994, 23: 159–168

    Article  MATH  Google Scholar 

  14. Isidori A. Disturbance attenuation and control via measurement feedback in nonlinear systems. IEEE Trans Automat Control, 1992, 37: 1283–1293

    Article  MATH  MathSciNet  Google Scholar 

  15. Schaft A J van der. L 2-gain analysis of nonlinear systems and nonlinear state feedback control. IEEE Trans Automat Control, 1992, 37: 770–783

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu C C, Chen F C. Adaptive control of nonlinear continuous systems using neural networks general relative degree and MIMO cases. Int J Control, 1993, 58: 317–335

    Article  MATH  Google Scholar 

  17. Jose R N, Wang H. A direct adaptive neural-network control for unknown nonlinear systems and its application. IEEE Trans Neural Netw, 1998, 9: 27–34

    Article  Google Scholar 

  18. Xu H J, Ioannou P A. Robust adaptive control for a class of MIMO nonlinear systems with guaranteed error bounds. IEEE Trans Automat Control, 2003, 48: 728–742

    Article  MathSciNet  Google Scholar 

  19. Ge S S, Wang C. Adaptive neural control of uncertain MIMO nonlinear systems. IEEE Trans Neural Netw, 2004, 15: 674–692

    Article  Google Scholar 

  20. Li Y H, Qiang S, Zhuang X Y, et al. Robust and adaptive backstepping control for nonlinear systems using RBF neural networks. IEEE Trans Neural Netw, 2004, 15: 693–701

    Article  Google Scholar 

  21. Ge S S, Wang C. Direct adaptive NN control of a class of nonlinear systems. IEEE Trans Neural Netw, 2002, 15: 214–221

    Article  Google Scholar 

  22. Zhang Y P, Peng P Y, Jiang Z P. Stable neural controller design for unknown nonlinear systems using backstepping. IEEE Trans Neural Netw, 2000, 11: 1347–1360

    Article  Google Scholar 

  23. Kwan C, Lewis F L. Robust backstepping control of nonlinear systems using neural networks. IEEE Trans Syst Man Cybern A, 2000, 30: 753–766

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Mei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, R., Wu, Q. & Jiang, C. Robust adaptive backstepping control for a class of uncertain nonlinear systems based on disturbance observers. Sci. China Inf. Sci. 53, 1201–1215 (2010). https://doi.org/10.1007/s11432-010-3116-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-3116-8

Keywords

Navigation