Skip to main content
Log in

On the maximum likelihood method for target localization using MIMO radars

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A multiple-input multiple-output (MIMO) radar uses multiple antennas to simultaneously transmit multiple independent probing signals, and uses multiple antennas to receive the backscattered signals. The modeling of MIMO radar with transmit spatial diversity and coherent reception is addressed herein. The maximum likelihood (ML) method for parameter estimation using MIMO radars is considered, and two approximate ML algorithms are proposed. In the uniform noise scenario, one of the proposed algorithms performs similarly to the delay-and-sum beamformer which is optimal in the ML sense in single target case, while it outperforms the other proposed approximate ML algorithm at the cost of more computational load. In the non-uniform noise scenario, the proposed approximate ML algorithms both outperform the delay-and-sum beamformer. The efficiency of the proposed methods is validated by the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Fishler E, Haimovich A, Blum R S, et al. Spatial diversity in radars-models and detection performance. IEEE Trans Signal Process, 2006, 54: 823–838

    Article  Google Scholar 

  2. Lehmann N H, Fishler E, Haimovich A M, et al. Evaluation of transmit diversity in MIMO-radar direction finding. IEEE Trans Signal Process, 2007, 55: 2215–2225

    Article  MathSciNet  Google Scholar 

  3. Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separated antennas. IEEE Signal Process Mag, 2008, 25: 116–129

    Article  Google Scholar 

  4. Bekkerman I, Tabrikian J. Target detection and localization using MIMO radars and sonars. IEEE Trans Signal Process, 2006, 54: 3873–3883

    Article  Google Scholar 

  5. Xu L, Li J, Stoica P. Adaptive techniques for MIMO radar. In: 4th IEEE Workshop Sensor Array Multi-Channel Processing. Waltham: IEEE Press, 2006. 258–262

    Google Scholar 

  6. Xu L, Li J. Iterative generalized-likelihood ratio test for MIMO radar. IEEE Trans Signal Proces, 2007, 55: 2375–2385

    Article  Google Scholar 

  7. Fuhrmann D R, Antonio G S. Transmit beamforming for MIMO radar systems using partial signal correlation. In: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers. Pacific Grove, CA: IEEE Press, 2004. 295–299

    Chapter  Google Scholar 

  8. Stoica P, Li J, Xie Y. On probing signal design for MIMO radar. IEEE Trans Signal Process, 2007, 55: 4151–4161

    Article  MathSciNet  Google Scholar 

  9. Li J, Xu L, Stoica P, et al. Range compression and waveform optimization for MIMO radar: a Cramer-Rao bound based study. IEEE Trans Signal Process, 2008, 56: 218–232

    Article  MathSciNet  Google Scholar 

  10. Yang Y, Blum R S. MIMO radar waveform design based on mutual information and minimum mean-square error estimation. IEEE Trans Aerospace Electr Syst, 2007, 43: 330–343

    Article  Google Scholar 

  11. Li J, Stoica P. MIMO radar with colocated antennas. IEEE Signal Process Mag, 2007, 24: 106–114

    Article  Google Scholar 

  12. He Z S, Han C L, Liu B. MIMO radar and its technical characteristic analyses. Acta Electr Sin, 2005, 33: 143–147

    Google Scholar 

  13. Xia W. Research on models and signal processing for MIMO Radars. Dissertation for the Doctoral Degree. Chengdu: University of Electronic Science and Technology of China, 2008

    Google Scholar 

  14. Li J, Stoica P, Xu L, et al. On parameter identifiability of MIMO radar. IEEE Signal Process Lett, 2007, 14: 968–971

    Article  Google Scholar 

  15. Chen C Y, Vaidyanathan P P. MIMO radar space-time adaptive processing using prolate spheroidal wave functions. IEEE Trans Signal Process, 2008, 56: 623–635

    Article  MathSciNet  Google Scholar 

  16. Tang J, Wu Y, Peng Y N, et al. On detection performance and system configuration of MIMO radar. Sci China Ser F-Inf Sci, 2009, 52: 1250–1257

    Article  MATH  Google Scholar 

  17. Tang J, Wu Y, Peng Y N, et al. On detection performance of MIMO radar for Rician target. Sci China Ser F-Inf Sci, 2009, 52: 1456–1465

    Article  MATH  Google Scholar 

  18. Guan J, Huang Y. Detection performance analysis for MIMO radar with distributed apertures in Gaussian colored noise. Sci China Ser F-Inf Sci, 2009, 52: 1688–1696

    Article  MATH  Google Scholar 

  19. Li J, Halder B, Stoica P, et al. Computationally efficient angle estimation for signals with known waveforms. IEEE Trans Signal Process, 1995, 43: 2154–2163

    Article  Google Scholar 

  20. Swindlehurst A L, Stoica P. Maximum likelihood methods in radar array signal processing. Proc IEEE, 1998, 86: 421–441

    Article  Google Scholar 

  21. Stoica P, Moses R. Introduction to Spectral Analysis. Upper Saddle River, NJ: Prentice-Hall, 1997

    MATH  Google Scholar 

  22. Haykin S, ed. Array Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1985

    MATH  Google Scholar 

  23. Stoica P, Sharman K C. Maximum likelihood methods for direction-of-arrival estimation. IEEE Trans Acoust Speech Signal Process, 1990, 38: 1132–1143

    Article  MATH  Google Scholar 

  24. Pesavento M, Gershman A B. Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise. IEEE Trans Signal Process, 2001, 49: 1310–1324

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, W., He, Z. & Liao, Y. On the maximum likelihood method for target localization using MIMO radars. Sci. China Inf. Sci. 53, 2127–2137 (2010). https://doi.org/10.1007/s11432-010-4058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4058-x

Keywords

Navigation