Skip to main content
Log in

Accurate location of all surface wave modes for Green’s functions of a layered medium by consecutive perturbations

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, an efficient method is proposed to quickly and accurately locate all the surface wave modes of spectral Green’s functions of a layered medium. This method consists of two parts. In the first part, all the surface wave poles without considering the medium loss are located by a modified dichotomy on the real axis in the complex plane. In the second part, consecutive perturbations with respect to the medium loss are performed, which means that the medium loss is increased step by step from zero to the given value, and at each step, the Newton-Raphson algorithm is employed to find all the current poles, with the poles at the previous step as initial values. The residues of the surface wave poles are analytically calculated without any contour integral. The whole procedure is based on the recursively rational forms of spectral Green’s functions. As an application, all the surface wave poles and their residues obtained by the method proposed in this paper are applied in evaluation of the spatial Green’s functions by the discrete complex image method. Some numerical examples are provided to validate the correctness and efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mosig J R. Numerical Techniques for Microwave and Millimeter-Wave Passive Structures. Itoh T, ed. New York: Wiley, 1989, ch. 3

    Google Scholar 

  2. Chew W C. Waves and Fields in Inhomogeneous Media. ser. Electromagn Waves. Piscataway, NJ: IEEE Press, 1995

    Google Scholar 

  3. Chew W C, Jin J M, Michielssen E, et al. Efficient Algorithm in Computational Electromagnetics. Boston, London: Artech House, 2001

    Google Scholar 

  4. Fang D G. Antenna Theory and Microstrip Antennas. Beijing: Science Press, 2006

    Google Scholar 

  5. Harrington R F. Field Computation by Moment Methods. Melbourne, FL: Krieger, 1983

    Google Scholar 

  6. Michalski K A, Zheng D. Electromagnetic scattering and radiation by surfaces of arbitrary shape in layered media, Part I: Theory. IEEE Trans Anten Propag, 1990, 38: 335–344

    Article  Google Scholar 

  7. Michalsky K A, Mosig J R. Multilayered media Green’s functions in integral equation formulations. IEEE Trans Micro Theory Tech, 1997, 45: 508–519

    Google Scholar 

  8. Bernal J, Medina F, Boix R R, et al. Fast full-wave analysis of multistrip transmission lines based on MPIE and complex image theory. IEEE Trans Microw Theory Tech, 2000, 48: 445–452

    Article  Google Scholar 

  9. Aksun M I, Mittra R. Derivation of closed-form Green’s functions for a general microstrip geometry. IEEE Trans Microw Theory Tech, 1992, 40: 2055–2062

    Article  Google Scholar 

  10. Dural G, Aksun M I. Closed-form Green’s functions for general sources and stratified media. IEEE Trans Microw Theory Tech, 1995, 43: 1545–1551

    Article  Google Scholar 

  11. Collin R E. Field Theory of Guided Waves. New York: McGraw-Hill, 1960

    Google Scholar 

  12. Aksun M I, Dural G. Clarification of issues on the closed-form Green’s functions in stratified media. IEEE Trans Anten Propag, 2005, 53: 3644–3653

    Article  Google Scholar 

  13. King R W P. The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region. J Appl Phys, 1991, 69: 7985–7995

    Google Scholar 

  14. Cui T J, Chew W C. Fast evaluation of Sommerfeld integrals for EM scattering and radiation by three dimension buried objects. IEEE Trans Geosci Remote Sens, 1999, 37: 887–900

    Article  Google Scholar 

  15. Fang D G, Yang J J, Delisle G Y. Discrete image theory for horizontal electric dipoles in a multilayered medium. IEE Proc H, 1988, 135: 297–303

    Google Scholar 

  16. Kipp R A, Chan C H. Complex image method for sources in bounded regions of multilayer structures. IEEE Trans Microw Theory Tech, 1994, 42: 860–865

    Article  Google Scholar 

  17. Aksun M I. A robust approach for the derivation of closed form Green’s functions. IEEE Trans Microw Theory Tech, 1996, 44: 651–658

    Article  Google Scholar 

  18. Hua Y, Sakar T K. Generalized pencil-of-function method for extracting poles of an EM system from its transient response. IEEE Trans Anten Propagat, 1995, 37: 229–234

    Article  Google Scholar 

  19. Gustavsen B, Semlyen A. Rational approximation of frequency domain responses by vector fitting. IEEE Trans Power Delivery, 1999, 14: 1052–1061

    Article  Google Scholar 

  20. Kourkoulos V N, Cangellaris A C. Accurate approximation of Greens functions in planar stratified media in terms of a finite sum of spherical and cylindrical waves. IEEE Trans Anten Propag, 2006, 54: 1568–1576

    Article  MathSciNet  Google Scholar 

  21. Polimeridis A G, Yioultsis T V, Tsiboukis T D. A robust method for the computation of Green’s functions in stratified media. IEEE Trans Anten Propag, 2007, 55: 1963–1969

    Article  MathSciNet  Google Scholar 

  22. Teo S A, Leong M S, Chew S T, et al. Complete location of poles for thick lossy grounded dielectric slab. IEEE Trans Microw Theory Tech, 2002, 50: 440–445

    Article  Google Scholar 

  23. Tsang L, Wu B. Electromagnetic fields of Hertzian dipoles in layered media of moderate thickness including the effects of all modes. IEEE Anten Wirel Propag Lett, 2007, 6: 316–319

    Article  Google Scholar 

  24. Wu B, Tsang L, Ong C J. Fast all modes (FAM) method combined with NMSP for evaluating spatial domain layered medium Green’s functions of moderate thickness. Microw Opt Tech Lett, 2007, 49: 3112–3118

    Article  Google Scholar 

  25. Wu B, Tsang L. Fast computation of layered medium of Green’s functions of multilayers and lossy media using fast all-modes method and numerical modified steepest descent path method. IEEE Trans Microw Theory Tech, 2008, 56: 1446–1454

    Article  Google Scholar 

  26. Marin M A, Barkeshli S, Pathak P H. On the location of proper and improper surface wave poles for the grounded dielectric slab. IEEE Trans Anten Propag, 1990, 38: 570–573

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu Y, Li L W, Yeo T S, et al. Application of DCIM to MPIE-MoM analysis of 3-D PEC objects in multilayered media. IEEE Trans Anten Propag, 2002, 50: 157–162

    Article  Google Scholar 

  28. Neve M J, Paknys R. A technique for approximating the location of surface- and leaky-wave poles for a lossy dielectric slab. IEEE Trans Anten Propag, 2006, 54: 115–120

    Article  Google Scholar 

  29. Simsek E, Liu Q H, Wei B. Singularity subtraction for evaluation of Green’s function for multilayer media. IEEE Trans Microw Theory Tech, 2006, 54: 216–225

    Article  Google Scholar 

  30. Mesa F, Horno M. Computation of proper and improper modes in multilayered bianisotropic waveguides. IEEE Trans Microw Theory Tech, 1995, 43: 233–235

    Article  Google Scholar 

  31. Ling F. Fast electromagnetic modeling of multilayer microstrip antennas and circuits. Ph. D. Thesis in Elect. Eng. Urbana-Champaign: Illinois Univ., 2000

    Google Scholar 

  32. Ling F, Jin J M. Discrete complex image method for Greens functions of general multilayer media. IEEE Trans Microw Guided Wave Lett, 2000, 10: 400–402

    Article  Google Scholar 

  33. Paknys R, Jackson D R. The relation between creeping waves, leaky waves and surface waves. IEEE Trans Anten Propag, 2005, 53: 898–907

    Article  Google Scholar 

  34. Zhang M, Li L W, Tian Y F. An efficient approach for extracting poles of Green’s functions in general multilayered media. IEEE Trans Anten Propag, 2008, 56: 269–273

    Article  Google Scholar 

  35. Daoxiang W, Kai-Ning E Y, Jian B, et al. A direct method for extracting surface waves of Green’s functions in a multilayered medium. In: IEEE Antennas and Propagation Society International Symposium, Hong Kong, 2008. 4395–4398

  36. Lang S. Complex Analysis. 4th ed. New York: Spriger-Verlag, 1999

    MATH  Google Scholar 

  37. Anemogiannis E, Glytsis E. Multilayer waveguides: efficient numerical analysis of general structures. J Lightwave Tech, 1992, 10: 1344–1351

    Article  Google Scholar 

  38. Rodriguez-Berral R, Mesa F, Medina F. Systematic and efficient root finder for computing the modal spectrum of planar layered waveguides: Original Articles. Int J RF Microw Comput Aid Eng, 2003, 14: 73–83

    Article  Google Scholar 

  39. Song Z, Zhou H X, Hu J, et al. Accurate evaluation of Green’s functions in a layered medium by SDP-FLAM. Sci China Ser F-Inf Sci, 2009, 52: 867–875

    Article  MATH  Google Scholar 

  40. Yuan M, Sakar T K, Salazar-Palma M. A direct discrete complex image method from the closed-form Green’s functions in multilayered media. IEEE Trans Microw Theory Tech, 2005, 53: 1025–1032

    Google Scholar 

  41. Yuan M, Sakar T K. Computation of the Sommerfeld integral tails using the matrix pencil method. IEEE Trans Anten Propag, 2006, 54: 1358–1362

    Article  Google Scholar 

  42. Yuan M, Zhang Y, De A, et al. Two-dimensional discrete complex image method (DCIM) for closed-form Green’s function of arbitrary 3D structures in general multilayered media. IEEE Trans Anten Propag, 2008, 56: 1350–1357

    Article  MathSciNet  Google Scholar 

  43. Pan S G, Wolff I. Scalarization of dyadic spectral Green’s functions and network formalism for three-dimensional full-wave analysis of planar lines and antennas. IEEE Trans Microw Theory Tech, 1994, 42: 2118–2127

    Article  Google Scholar 

  44. Chow Y L, Yang J J, Fang D G, et al. A closed-form spatial Green’s function for the thick microstrip substrate. IEEE Trans Microw Theory Tech, 1991, 39: 588–592

    Article  Google Scholar 

  45. Rogier H, Ginste D V. A fast procedure to accurately determine leaky modes in multilayered planar dielectric substrates. IEEE Trans Microw Theory Tech, 2008, 56: 1413–1422

    Article  Google Scholar 

  46. Kincaid D, Cheney W. Numerical Analysis: Mathematics of Scientific Computing. Wadsworth Group, American Mathemetical Society, 2002

  47. Mosig J R, Melcon A A. Green’s functions in lossy layered media: integration along the imaginary axis and asymptotic behavior. IEEE Trans Anten Propag, 2003, 51: 3200–3208

    Article  Google Scholar 

  48. Boix R R, Mesa F, Medina F. Application of total least squares to the derivation of closed-form Green’s functions for planar layered media. IEEE Trans Microw Theory Tech, 2007, 55: 268–280

    Article  Google Scholar 

  49. Mesa F, Boix R R, Medina F. Closed-form expressions of multilayered planar Green’s functions that account for the continuous spectrum in the far field. IEEE Trans Microw Theory Tech, 2008, 56: 1601–1614

    Article  MathSciNet  Google Scholar 

  50. Shuley N V, Boix R R, Medina F, et al. On the fast approximation of Green’s functions in MPIE formulations for planar layered media. IEEE Trans Microw Theory Tech, 2002, 50: 2185–2192

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Song or HouXing Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Z., Zhou, H., Hu, J. et al. Accurate location of all surface wave modes for Green’s functions of a layered medium by consecutive perturbations. Sci. China Inf. Sci. 53, 2363–2376 (2010). https://doi.org/10.1007/s11432-010-4093-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4093-7

Keywords

Navigation