Skip to main content
Log in

Low complexity construction for quasi-cyclic low-density parity-check codes by Progressive-Block Growth

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, a novel method for constructing quasi-cyclic LDPC codes with low complexity is proposed. By choosing each circulant permutation matrix sequentially, the proposed method ensures that the current circulant permutation matrix forms no cycles of length smaller than g with the existent circulant permutation matrices. The construction complexity of the proposed algorithm is much lower than that of the random construction. Simulation results show that the proposed QC-LDPC codes can outperform both the random regular LDPC codes with short to moderate block lengths, and the proposed construction method LDPC codes based on the finite geometries in terms of bit-error-rate (BER).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gallager R G. Low-Density Parity-Check Codes. Cambridge: MIT Press, 1963

    Google Scholar 

  2. Berrou C, Glavieux A, Thitimajshima P. Near Shannon limit error correcting coding and decoding: Turbo codes. In: Proc IEEE Int Conf Commun, Geneva, Switzerland, 1993. 1064–1070

  3. MacKay D J C, Neal R M. Near Shannon limit performance of low density parity check codes. Electr Lett, 1997, 33: 457–458

    Article  Google Scholar 

  4. Sipser M, Spielman D. Expander codes. IEEE Trans Inf Theory, 1996, 42: 1710–1722

    Article  MATH  MathSciNet  Google Scholar 

  5. MacKay D J C. Good error-correcting codes based on very sparse matrices. IEEE Trans Inf Theory, 1999, 45: 399–431

    Article  MATH  MathSciNet  Google Scholar 

  6. Chung S Y, Forney G D Jr, Richardson T J, et al. On the design of low density parity check codes within 0.0045 dB of the Shannon limit. IEEE Commun Lett, 2001, 5: 58–60

    Article  Google Scholar 

  7. Richardson T J, Urbanke R. The capacity of low density parity check codes under message passing decoding. IEEE Trans Inf Theory, 2001, 47: 599–618

    Article  MATH  MathSciNet  Google Scholar 

  8. Li ZW, Chen L, Zeng L Q, et al. Efficient encoding of quasi-cyclic low-density parity-check codes. IEEE Trans Commun, 2006, 54: 71–81

    Article  Google Scholar 

  9. Kou Y, Lin S, Fossorier M P C. Low density parity check codes based on finite geometries: A rediscovery and new results. IEEE Trans Inf Theory, 2001, 47: 2711–2736

    Article  MATH  MathSciNet  Google Scholar 

  10. Lan L, Tai Y Y, Lin S. New constructions of quasi-cyclic LDPC codes based on special classes of BIDB’s for the AWGN and binary erasure channels. IEEE Trans Commun, 2008, 56: 39–48

    Article  Google Scholar 

  11. Djordjevic I B. Quantum LDPC codes from balanced incomplete block designs. IEEE Commun Lett, 2008, 12: 389–391

    Article  Google Scholar 

  12. Chen J H, Tanner R M, Zhang J T, et al. Construction of irregular LDPC codes by quasi-cyclic extension. IEEE Trans Inf Theory, 2007, 53: 1479–1483

    Article  MathSciNet  Google Scholar 

  13. Kim S, No J S. Quasi-cyclic low-density parity-check codes with girth larger than 12. IEEE Trans Inf Theory, 2007, 53: 2885–2891

    Article  MathSciNet  Google Scholar 

  14. Bonello N, Chen S. Construction of regular quasi-cyclic protograph LDPC codes based on Vandermonde. IEEE Trans Vehicular Technol, 2008, 57: 2583–2588

    Article  Google Scholar 

  15. Huang C M, Huang J F, Yang C C. Construction of quasi-cyclic LDPC codes from quadratic congruences. IEEE Commun Lett, 2008, 12: 313–315

    Article  Google Scholar 

  16. Fossorier M P C. Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans Inf Theory, 2004, 50: 1788–1793

    Article  MathSciNet  Google Scholar 

  17. Tanner R M. A recursive approach to low complexity codes. IEEE Trans Inf Theory, 1981, 27: 533–547

    Article  MATH  MathSciNet  Google Scholar 

  18. Hu X Y, Elefherio E, Arnold D M. Regular and irregular progressive edge-growth Tanner graphs. IEEE Trans Inf Theory, 2005, 51: 386–398

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PinYi Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, P., Yuan, Q., Wang, R. et al. Low complexity construction for quasi-cyclic low-density parity-check codes by Progressive-Block Growth. Sci. China Inf. Sci. 54, 371–380 (2011). https://doi.org/10.1007/s11432-010-4152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-010-4152-0

Keywords

Navigation