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Abstract

Existing algorithms for isolating real solutions of zeriagnsional polynomial
systems do not compute the multiplicities of the solutiolsthis paper, we de-
fine in a natural way the multiplicity of solutions of zerasgénsional triangular
polynomial systems and prove that our definition is equivitie the classical def-
inition of local (intersection) multiplicity. Then we prest an effective and com-
plete algorithm for isolating real solutions with multigties of zero-dimensional
triangular polynomial systems using our definition. Theoaithm is based on in-
terval arithmetic and square-free factorization of polymals with real algebraic
coefficients. The computational results on some examptes the literature are
presented.

1 Introduction

Real solution isolation for polynomials/zero-dimensibpalynomial systems/semi-
algebraic systems is one of the central topics in computaltieeal algebra and com-
putational real algebraic geometry, which has many apipica in various problems
with different backgrounds.

The so-called real root/zero/solution isolation of a paolyrial/zero-dimensional
polynomial system/semi-algebraic system withlistinct real solutions is to compute
k disjoint intervals/“boxes” containing thiesolutions, respectively. To our knowledge,
designing algorithms for real root isolation for polynotsiwith rational coefficients
was initiated by[[4] in 1976, which was closely related to itmplementation of CAD
algorithm [3]. Designing and implementation of such alfforis have been deeply
developed by many subsequent wdrkl[5, 1,[10,11, 12] sinae tibose algorithms
are mainly based on Descartes’ rule of sign or Vincent's o

To generalize the algorithms for polynomials to zero-disienal triangular poly-
nomial systems, one must consider real root isolation fdyrmomials with real alge-
braic coefficients. There are indeed some work to generBizeartes’ rule of sign to
polynomials with algebraic coefficients. However, dealivith algebraic coefficients
directly may affect efficiency greatly.

In [17,18] we considered real solution isolation for sefgiedraic systems with
finite solutions. We introduced a method which always ersbkto avoid handling
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directly polynomials with algebraic coefficients and to lde#h polynomials with ra-
tional coefficients only. A recent algorithm inl[2] can conpthe parity of the solu-
tions as well as isolate real roots of zero-dimensionahgiidar polynomial systems.

In this paper, we define in a natural way the multiplicity ofudimns of zero-
dimensional triangular polynomial systems and prove thatdefinition is equiva-
lent to the classical definition of local (intersection) tiplicity. Then we present
an effective and complete algorithm for isolating real sols with multiplicities of
zero-dimensional triangular polynomial systems usingdafinition. The algorithm is
based on square-free factorization of polynomials with aégebraic coefficients and
our previous work[18]. We also provide computational ressah some examples from
the literature.

In this paper, all polynomials are [ X| = C[zy, ..., x,] if not specified.

2 Multiplicities of zeros of triangular sets

First, let’s recall the definition dbcal (intersection) multiplicity We follow the nota-
tions in Chapter 4 of [6]. Although some notations and de6ing can be stated in a
more general way, we restrict ourselves to the g | = Clxy, ..., z,] Since we are
interested in the complex or real zeros of zero-dimensipolghhomial systems.

Forp = (m,...,nn,) € C", we denote byM, the maximal ideal generated by
{z1 —m,...,z, — 1y} in C[X], and write

f
(C[X]Mp = {E : f7g € (C[X]ag(nh 77771) 7é 0} .
It is well-known thatC[X],,, is the so-calledocal ring.

Definition 1 [6] Supposd is a zero-dimensional ideal i€[X] andp € Zerq(]), the
zero set of in C. Then themultiplicity of p as a point inZero(!) is defined to be

dimk (C[X]]LIP/I(C[X]MP

That is, the multiplicity op is the dimension of the quotient spagX |, /IC[X] s,
as a vector space ovél.

For a zero of a zero-dimensional triangular set, there caragural and intuitional
definition of multiplicity as follows.

Definition 2 For a zero-dimensional triangular system,

f1($1) =0,
fo(x1,22) =0,

fn(xh" '7:rn) = 07

and one of its zerogy = (&1, .. .,&,), themultiplicity of £ is defined to beﬁ m;,
=1

wherem; is the multiplicity ofz; = &; as a zero of the univariate polynomiﬁ(gi v &icr, 1)
fori=1,...,n.



Example 1 Consider the following triangular system:

g1 =25 + 223 + 727 =0,
go = T3 + 23 + x122 =0,
g3 :$§+x1x3+x1$2 =0.

Let's compute the local multiplicity ai, 0,0) by Definition[2. The multiplicity of
x1 = 0, azero ofgy, is 3. Substituter; = 0in f, and the resultegs is g5, = z3. Thus,
the multiplicity ofzy = 0, a zero ofg), is 2. Finally, substituter; = x5 = 0in g3,
and the resulteds is g4 = x3. Thus, the multiplicity of:3 = 0, a zero ofg} is 2. As a
result, the local multiplicity 0f0,0,0) is3 x 2 x 2 = 12.

In the following, we will prove that Definitiofl2 is equivaleto Definition[d. Many
notations and results are taken fram [6].

Usually, a total order that is compatible with multiplicatiand that satisfiels > x;
for all i’s, is called docal order.

Definition 3 [B]( Negative lexicographical ordering
Assumer = (a1, ...,a,) € NZL andf = (B1,..., 8,) € NL. We sayX * >,,; X7 if

Remark 1 The negative lexicographical ordering},,; is obviously a local order.

For a given order, Igf),Im(f) and It /) denote thdeading coefficientleading
monomialandleading termof f, respectively. For a s&, It(S) = {lt(f) : f € S}.

Definition 4 [6] Let R = C[X]x, and! C R be anideal. Asetg:,...,gm} C Iis
called astandard basifor I with respect to<,,; if (It(1)) = (It(g1),. .., It(gm)).

Fora = (ai,...,a,) € NZ, definela| = }_, a;. For any polynomialy =
>, caX® € C[X] with total degreel, we will write g" = >~ _ ¢t~ X« for the
homogenization of with respect ta.

Definition 5 [6] Definet* X >/, t* X if a +|a| > b+ |B|ora+ |a| = b+ ||, but
X > X8,

Itis easy to verify that>/ , is a monomial order oveC|[t, X|.

Theorem 1 [6] (Analog of Buchberger’s Criterion)

LetG = {g1,...,9m}, > be any local order, and be the ideal inC[X],;, gen-
erated byG. G is a standard basis fof if and only if applying Mora normal form
algorithm to each S-polynomial formed from elements of #iteo6§ homogenizations
G" = {gl,... gl } yields a zero remainder.

For our purpose, we state the criterion in another form devial.

Theorem 2 Let notations be as in Theordm 17 is a standard basis if and only if
for any nonzero S-polynomial gf and g?, denoted bys5;;, there exist homogeneous
polynomialsl/, Ay, ..., A,, € C[t, X] such that

USij = Al 1
=1
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wherelt(U) = t* for someu,
a+ deg(S;;) = deg(4;) + deg(glh)
for all I whenever4; # 0, andlt(A4,g/") <!, t(US;;).

Remark 2 We omit the proof of Theorem 2, which is almost the same a®ffidteo-
reml. The criterion in Theorem 2 is independent to any athors. One can use Mora
normal form algorithm to get such representation[ds (1) facteS;; if G is a standard
basis.

Without loss of generality, in the rest of this section weuassp = (0,...,0)isa
zero of the triangular set under discussion and focus onttgipticity. Consider the
following triangular set with leading termsz{™, ..., ¢,z respectively w.r.t. the
order>,;:

fi(z) = @™ + t1(z1),

T — f2($15$2) :CQ‘CHQTQ +t2($15$2)a (2)

e
fa(zr, .o xn) = cual® + tp (1, ..., Tp),
wheret;(z1,...,z;) is a polynomial inxy, ..., z; fori = 1,...,n ande;’s are con-

stants. Without loss of generality, we assutyie are alll in the proof of the following
proposition.

Proposition 1 LetT be as above and = (T) the ideal generated by in the local
ring C[X](,,,...z,)- ThenT is a standard basis fof with respect ta>,,;.

PrROOF  According to Theorerll2, we only need to show that every nan&e
polynomial of each pair of * = {fI',..., fi} can be represented in the form of

@.
Assume thalf) =tz +1;, f] = tb:c;”j +%; anda < b. The S-polynomial,
Sij, of flrandf is
SZ] = tbiaiﬁ‘;-nj fzh — II,',TLnlth

Letp, =t~z f} andpy = «]™ f}'. Under the ordek,,, the first term ofp, is
equal to the first term of. If S;; # 0, there exists some such that under the order
<!, the L-th term ofp; is not equal to the.-th term ofp, and thek-th term ofp; is
equal to thek-th term ofp,, for all 1 < k < L. Then, thek-th terms ofp; andp, can
be represented ag™ g, andt®~“x}" ¢, for someygy, respectively. Thusf;" and /7'

can be respectively rewritten as

F= a0+ Q) + faa, f1 = 2792V (19 + Q) + T,

L—-1 - N
whereQ = Y~ ¢ and f;; and f;, are the remained parts ¢f and /', respectively,

k=1
which satisfy that L L
(¢~} fio) # It(2]™ ).

Itis easy to verify tha;; = 1"~ a7’ fi; — 2] 2. Then

Im(S;;) = max(lm(tb_axyljﬂ)v Im(xl’“ﬂ))



under the ordex! ;. Thus,
(t" +Q)Sy; = fiafj' — Fia 1

LetU = t*+ Q, Aj = fia, Ai = fjnandA; = 0(l # i and [ # 7). Then we have

US;i; = Z At

=1

and all the requirements in Theor€in 2 are met. Thisa standard basis fét") w.r.t
<nl-

In order to prove the equivalence of Definitidis 2 Ahd 1 abloai{local) multiplic-
ity, we need the following theorem, which can be found.in [6].

Theorem 3 [6] Let I be an ideal in a local ringR, and assume thatim;,, R/(It(I))
is finite for some local order. Then we have

dim; R/I = dimy, R/(It(I)).

Theorem 4 Let notations be as above afitla zero-dimensional triangular set with a

zerop = (0, ...,0). If the multiplicity ofp defined by Definitionl2 is» = [] m;, then
1=1

the local multiplicity, defined by Definitidn 1, pfas a point of( T) is alsom.

Proor  If the multiplicity is J] m; in the sense of Definitiohl2, thefi can be
=1
rewritten as

fi(@1) = (a1 + ta(@))z)™
fa(z1,22) = (c2 + tor(z1, x2)) x5 + 1t2a (21, 2),
T=4{ ...,
n—1
fn(X) = (cn +ta (X)) + Y7 @itnig1(X),
=1
whereX = (x1,...,z,), thet;;(X)s are polynomials ifx1, . . ., z;) and thet;; (X)s
do not contain constants.
Under the order>,,;, the leading term of;(z1,...,z;) iS¢z} fori =1,...,n.
According to Propositionl1]" is a standard basis éf= (T). Thus,
(t(D)) = (x, ... x).

’'n

Let R = C[X],, . According to Theorefl3,

dimg R/IR = dimg R/ (2], ..., 20" )R = [ [ mi.
=1

3 Algorithm for real solution isolation with multiplicity

In this section, based on the results in last section, weeptes algorithm for real root
isolation with multiplicity of zero-dimensional triangad polynomial equations. That



is, we not only isolate the real roots, but also compute thkipfiaity of each real root
by Definition[2 at the same time. In this section, the inpuypomial or polynomial
set to our algorithms is taken fro@[X].

It is well-known that there exist some efficient algorithrosifeal root isolation of
polynomials or polynomial equations or semi-algebraid¢eays [4] 5| 1], 10, 17, 11) 2,
18]. To obtain the multiplicities of the real roots at the satime, our idea is simple
that is to take use afquare-free factorizatioof polynomials with rational or algebraic
coefficients. When dealing with algebraic coefficients, wakenuse of the idea in
[17,[18] which enables us to deal with rational coefficienttéad.

For the univariate case, suppgse= Hlepﬁ. Isolating the real zeros of with
multiplicity contains two main steps. One is to compute tipgasefree factorization of
p, the other is to isolate the real zeros of the squarefreegbart We can use many
existing tools to obtain the squarefree factorizatios, thosep;s. Then we know at
once the multiplicities of those real zeros of eaghIn principle, we may isolate the
real zeros of the squarefree partpoh two ways. One way is to isolate the real zeros
of p1ps - - - pi first and then match the zeros with to obtain correct multiplicities.
The other way is to isolate the real zeros of eackeparately. However, in the later
way, we may need to compute a root gapdifst. Anyway, the univariate case can be
efficiently dealt with. So, we do not enter the details of salgorithms and only give
a description of the input and output of such function.

Calling sequence UniIsol(f(z))

Input: a univariate polynomiaf (x)

Output: a set of elements of the for(ifu, b], m) where[a, b] is an interval containing
exact one real root of () = 0 andm is the multiplicity of the root. There are not any
real roots off (x) = 0 outside the intervals.

Then let us consider the multivariate case. To be more magisstate our problem
as follows: that is to isolate the real solutions with mditipies of the following zero-
dimensional triangular polynomial set

T = {fl(ml), fg(ml,mg), ey fn(xl, e ,xn)}

In principle, Definitio[2 suggests a naive method to complugdocal multiplicity as
follows. First compute all the zeros ¢f(«;) and their multiplicities byyniIsol; then
“substitute” the zeros far; in f2(z1, 22) one by one, and compute all the zeros of the
resultedf, (21, z2) and their multiplicities byUniIsol again, and so on. Of course,
in general we cannot directly substitute the zeros in thadgnpmials because they
may be algebraic numbers of high degrees. Nevertheless)dhie method is the main
framework of our algorithm.

LetT; = {fl(l'l), fg(l’l,xg), ceey fi(l'l, ceey CCZ)} We will call

([al,bl], ey [ai,bi]) or ([al,bl], ceey [ai,bi],m)

an interval solutionof T; (with multiplicity m) if the “box” [a1,b1] X -+ X [a;, bi]

contains exact one real solution @f (andm is the multiplicity of the solution).
If T; hask distinct real solutions, a set d@f interval solutions off; containing re-
spectively thek real solutions is called aolution setof 7;. For an interval solution

r = ([al,bl], ceey [ai,bi]), we deﬁneNT = [IEl — (Il,bl — X1y, L5 — ai,bi — $Z]
and N, > 0 stands fora; < z1 < by,...,a; < x; < b, i.e., (z1,...,2;) €
[al,bl] X oo X [al,bl]



Suppose we already have a solution sef;céind
(&1, -+, &) € [ar, ba] x -+ X [ag, by]

is a real root off; with multiplicity m. To isolate the real zeros ¢f,1 (&1, .-+, &, Tit1)
with multiplicity, we need to

1. compute the algebraic squarefree factorizatiofi of (€1, . . ., &, ziy1), and
2. isolate the real zeros of the squarefree part computed.

Letus first consider the second task, i.e., how to isolategthlezeros off;+1 (&1, - - -,
&, xiq ) ifitis squarefree. IN[18], we proposed a complete alganitballedRealZeros,
for isolating the real solutions (without multiplicitieej semi-algebraic systems. Our
second task can be accomplished by a sub-algorithReaiZeros. The key idea
of the algorithm is to compute two suitable polynomigls; and f;,; in z;,.; with
rational coefficients such that -

fir1 < fir1(6r, - &) < fim

by using interval arithmetic and those intervgls, b1, . . ., [a;, b;]. And the real zeros
of fiy1(&1,...,&,2,41) can be isolated through isolating the real zerog;ef and
fir1. Therefore, we can avoid dealing with polynomials with &lgec coefficients
directly. In the following, we call this sub-algorithiigebraicIsolate.

Calling sequence AlgebraicIsolate(g(xi,...,21+1),Ti,7)

Input: a squarefree polynomiglx,...,x;+1), & zero-dimensional triangular poly-
nomial setT; as above and an interval solution= ([a1, b1], . .., [a;, b;]) which con-
tains exact one real ze(¢, . . ., &;) of T;.

Output: a list of isolating intervals of real zeros 9t¢1, . .., &, ziy1)-

For the detail of the algorithmilgebraicIsolate, please be referred to [18].

Now, we turn to the first task, i.e., compute the algebraiasgfiee factorization
of fi+1(&,- .., &, zi+1). One may use some existing algorithms for algebraic factor-
ization, see for examplé [14], to accomplish the task. Inftlewing, we propose a
method for algebraic squarefree factorization based ogbatic gcd computation. A
key manipulation in the computation is to count real sohsiof semi-algebraic sys-
tems by an algorithrRealrootCountingin [L6].

Calling sequence RealrootCounting(F, N, P, H)

Input: a zero-dimensional polynomial sé&t, a list of non-strict inequalitiedV, a list
of strict inequalities” and a list of inequation&/ .

Output: the number of real roots of the systdfi = 0, N > 0, P > 0, H # 0}.

Calling sequence AlgebraicGCD(pi(x1,...,&it1),P2(T1,- .., Tit1), Li,7)

Input: two polynomialspy, p2 in z1, ..., z;41, @ zero-dimensional triangular polyno-
mial setT; as above and an interval solutier= ([a1,b1], ..., [ai, b;]) Of T;.

Output: The greatest common divisor pf andp, viewed as polynomials ia; 11
w.r.t. the interval solutiom, i.e.,gcd(p1 (&1, - - -, &y Tig1), P2(Ey - -+, &, Tig1)) Where
(&1,...,&) is the only real solution im.

1The algorithm is callediearsolve in [16]



Step 0 Suppose the subresultant chainpefandps w.rt. z;4q is Sy, Su—1,...,50
with principal subresultant coefficient,, R,,—1, . . ., Ro, respectively. Set «
0.

Step 1 ComputeR;.

Step 2 If RealrootCounting(T;, Ny, [ ], [R;]) = 0, i.e., the interval solution makes
R; vanish, then set +— j + 1 and go to Step 1.

Step 3 ReturnsS;.

There are several mature algorithins'[8, 13] for squarefiemfization of polyno-
mials inK[z] whereK is Z, Q or a finite field. It is well known that such algorithms
for univariate case only contain two main manipulation: gothputation and poly-
nomial division inK[x]. If we replace the gcd computation in those algorithms with
our AlgebraicGCD computation and replace the division manipulation withuolse
division, then those algorithms will compute algebraicamgfree factorization as we
want. So, We only give a simple description of our algoritheneh

Calling sequence AlgebraicSqfreeFactor(p(zi,...,Zit1), 15, 7)

Input: a polynomialp in x4, ..., z;+1, @ zero-dimensional triangular polynomial set
T; as above and an interval solutior= ([a1,b1], ..., [a;, b;]) of T;.

Output: the squarefree factorization piviewed as a polynomial im;; ; w.r.t. the in-
terval solutionr, i.e., the squarefree factorizatiomdt; , . . . , &, z;11) where(&y, ..., &)
is the only real solution im.

Now, we are ready to describe our algorithinii tiIsolate for real solution iso-
lation with multiplicity of zero-dimensional triangulapfynomial sets.

Calling sequence MultilIsolate(T)
Input: azero-dimensionaltriangular polynomial &t { f1(z1),. .., fa(z1, ..., 24)}.
Output: a solution set of” with multiplicity.

Stepli« 1, L; + UniIsol(f1).

Step 2 L; is a solution set of ; with multiplicity. If 4 = n, returnL,,.

Step 3 For each interval solution = ([a1, b1],. .., [ai,b;]) in L; with multiplicity,
computeAlgebraicSqfreeFactor(fiy1(x1,...,2i1+1), T;, 7). SO, we know
at once the multiplicity of each factor. Assunfg ; is the squarefree part of
fit1. Then, by applyingAlgebraicIsolate(f;+1,73,7) We can obtain the

isolating intervals of real zeros ¢f.,. So, it is easy to obtain a solution set
L; 1 of T; 1 with multiplicity by Definition[2.

i < i+ 1and go to Step 2.

Remark 3 Let r = ([a1,b1],...,[an,by]) be an interval solution of and § =
(&1,...,&,) is the real solution ine. If lc(f;)(&1,...,&-1) # 0for2 < i <n,T
is said to beregularw.r.t. £ (or 7). If fi(&1,...,&—1,;) is squarefree fol < i < n,

T is said to besquarefreev.r.t. £ (or r).

Itis clear thatMultiIsolate(T") actually computes as well a regular and square-
free decomposition of the given triangular géetv.r.t. its real zeros, respectively. That
is to say, we compute a set of triangular sBts and their solution set§); such that
U;Q; is a solution set of" and eachlV; is regular and squarefree w.r.t. each solution
in @;. If we modify slightly the algorithm, we can output the reguind squarefree
decomposition.



4 Examples

The algorithmMultiIsolate has been implemented as a Maple program which is
included in our package DISCOVERER [15]. For an input zemahsional triangu-
lar system, our program can compute the real solution isolaif the system with
multiplicity and output a regular and squarefree decontjprs{see Remark]3) of the
system w.r.t. those real solutions. Our program can dethethver the input system is
zero-dimensional. If it is not, the program will return a re&ge: “The dimension of
the system is positive.”

In this section, we illustrate the function of our programdmme examples. The
timings are collected on a Thinkpad X200 running Maple 11hwliG memory and
Windows Vista.

Example 2 Consider the following triangular system:
f1 =X — 2,
fo=(x+y—3)°y+3),
fa=? +ez+1)%((@ -y e+ 2 —y).

Within 1.6 seconds, our program outputs a solution set as follows.
1

[ [ [[272]7 [_35 _3]7 [_150“7 1 ]7 [ [[272]7 [_35 _3]7 [17 1]]a 2]7
[112,2), 13,81, [, g 2L 112,20, 1,10, [-1, -1]],15] ]

That means the system haseal solutions which are of multiplicities, 2, 2, 15, re-
spectively. Our program also outputs a regular and squafilecomposition of the
system w.r.t. the four distinct real solutions respectiad follows.

[ —2,y+ 3,1+ 125z],

[t —2,y+3,—1+32% — 22],

[x—2,y—1,z+1].
Note that the second and third solutions are both solutienthe second equations
above.

Example 3 Consider the following triangular system:

fi=(z+1)(z-2),

fo=@-y+1)*y -5+ -3z,

f3=(zy —6)22 + 22 + 1.
The system hasreal solutions all of multiplicities. The computation costs7 sec-
onds.

[ [102,2],13,3], [=1/2, =1 /2], 1] [ {[=1, =1, [=1, =3/4], [-3/8, —1/8]], 1],
[[=1, 1], (=1, =3/41, [3/8, 7/8]], 1], [ {[=1, =1], [1/2, 3/4], [-3/8, = 1/8]], 1],
(=1, =1, [1/2,3/4],3/8,3/4]}, 1], [ [[-1 ],[5,21/4],[*3/87*1/8]],1],
(=1, =1, [5,21/4], [1/4,1/2]],1] ].

A regular and squarefree decomposition is
[$—2,f,1+22’], [$+1afag]7
wheref = z2y—52%2—2xy?+132y—132+y3—Ty> +11y—5, g = yz?x—622+22+1.



Example 4 The following triangular system is taken from [7].
fl - .I'4,
fo=a%y +yt,
fa=2+22— 72 — 822
Within 0.1 seconds, we obtain two distinct real roots with multiplestl6.
[ [ [07 0]7 [07 0]7 [_15 _1] ]7 16 ]7

[ [[0,0],[0,0],[0,0]], 16 ].
And a regular and squarefree decompaosition is
[z,y,2 + 2% — T2® — 827?].
Example 5 The following triangular system is taken from [2].
fi=a* =322 — 23 + 22+ 2,
{ fo = y* + zy® + 3y% — 622y% + day + 2xy? — 422y + 4z + 2.
The time for computation .6 seconds and we obtair2 distinct real roots.
[ [[51/32,13/8],[-119/32, —475/128]],1 ],
[ [[51/32,13/8],[—147/128, —145/128]],1 |,
[ [[51/32,13/8],[53/64,107/128]],1 ],
[ [[51/32,13/8],[307/128,77/32]],1 |,
[ [[-5/8,—19/32],[-3/8,1/4]],1 ],
[ [[-5/8,-19/32],[13/8,17/8]],1 |,

[ [[45/32,23/16],[—3025/1024, —1499/512]],1 ],
[ [[45/32,23/16], [—1347/1024, —2639/2048]],1 ],
[ [[45/32,23/16],[11/8,3/2]],2 ],

[ [[-23/16,—45/32],[-5/8,—1/8]],1 ],

[ [[-23/16,—45/32],[17/4,5]],1 ],

[ [[-23/16,—45/32],[-3/2,—11/8]],2 ].

Itis clear that two of the solutions are of multipliciti@®nd the others are of multiplic-
ities 1. With respect to those solutions, we have a regular and sfresr decomposition
as follows.

[22 —x —1,h], [2° — 2, ho], [? — 2, R3],

where
hy =yt + ay® + 3y? — 62%y? + day + 22y? — 42’y + da + 2,
hy = —23354573041809 — 9122537689096x2 + 394067331437252y +

17148617740054z + 13135577714575y2 — 54735226134576y,
hs = —104zy + 335y — 335z + 208.
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