Skip to main content
Log in

A new complexity metric for FH/SS sequences using fuzzy entropy

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper presents a new complexity metric to evaluate the unpredictability of a frequency-hopping/spread-spectrum (FH/SS) sequence based on fuzzy entropy (FuzzyEn). According to the property of the FS/SS sequence, the definition of a fuzzy membership function for a complexity metric is presented and a basic theorem for FuzzyEn complexity is proved. Simulation and analytical results show that the proposed FuzzyEn works and can effectively discern the changing complexities of the FH/SS sequences, which are compared with a complexity metric based on approximate entropy (ApEn). The FuzzyEn scheme has obvious advantages in robustness to resolution parameters and sensitivity to vector dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar P V. Frequency hopping code sequence designs having large linear span. IEEE Trans Inf Theory, 1988, 34: 146–151

    Article  Google Scholar 

  2. Park S B, Lee K E, Choi Y K. Some good frequency hopping sequences with arbitrary number of slots. In: Proc IEEE MILCOM, Washington DC, USA, 2001. 1325–1329

  3. Heidari-Bateni G, McGillem C D. A chaotic direct-sequence spread-spectrum communication system. IEEE Trans Commun, 1994, 42: 1524–1527

    Article  Google Scholar 

  4. Wang H X, Yu J B. A new cipher quasi-chaotic frequency hopping sequence for FH/CDMA communications. In: Proceedings of IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, Xi’an, China, 2002. 497–501

  5. Li Z, Chang Y L, Jin L J. A novel family of frequency hopping sequences for multi-hop Bluetooth networks. IEEE Trans Consum Electron, 2003, 49: 1084–1089

    Article  Google Scholar 

  6. Li Z, Chang Y L, Jin L J, et al. Analysis of FHMA performance on block cipher based frequency hopping sequences. IEEE Commun lett, 2004, 8: 434–436

    Article  Google Scholar 

  7. Li Z, Cai J P, Chang Y L. Determining the complexity of FH/SS sequence by approximate entropy. IEEE Trans Commun, 2009, 57: 812–820

    Article  Google Scholar 

  8. Rizomiliotis P, Kalouptsidis N. Results on the nonlinear span of binary sequences. IEEE Trans Inf Theory, 2005, 51: 1555–1563

    Article  MathSciNet  Google Scholar 

  9. Xiao G Z, Wei S M, Lam K Y, et al. A fast algorithm for determining the linear complexity of a sequence with period pn over GF(q). IEEE Trans Inf Theory, 2000, 46: 2203–2206

    Article  MATH  MathSciNet  Google Scholar 

  10. Kolokotronis N, Kalouptsidis N. On the linear complexity of nonlinear filtered PN-sequences. IEEE Trans Inf Theory, 2003, 49: 3047–3059

    Article  MathSciNet  Google Scholar 

  11. Griffin F, Shparlinski I E. On the linear complexity profile of the power generator. IEEE Trans Inf Theory, 2000, 46: 2159–2162

    Article  MATH  MathSciNet  Google Scholar 

  12. Gutierrez J, Shparlinski I E, Winterhof A. On the linear and nonlinear complexity profile of nonlinear pseudorandom number generators. IEEE Trans Inf Theory, 2003, 49: 60–64

    Article  MATH  MathSciNet  Google Scholar 

  13. Kurosawa K, Sato F, Sakata T, et al. A relationship between linear complexity and k-error linear complexity. IEEE Trans Inf Theory, 2000, 46: 694–698

    Article  MATH  MathSciNet  Google Scholar 

  14. Lauder A G B, Paterson K G. Computing the error linear complexity spectrum of a binary sequence of period 2n. IEEE Trans Inf Theory, 2003, 49: 273–280

    Article  MATH  MathSciNet  Google Scholar 

  15. Li Z, Chang Y L, Jin L J. A novel family of frequency hopping sequences for multi-hop Bluetooth networks. IEEE Trans Consum Electron, 2003, 49: 1084–1089

    Article  Google Scholar 

  16. Li Z, Chang Y L, Jin L J, et al. Analysis of FHMA performance on block cipher based frequency hopping sequences. IEEE Commun Lett, 2004, 8: 434–436

    Article  Google Scholar 

  17. Liang M. The performance analysis of chaotic frequency-hopping sequences. J Electron Inf Technol, 2005, 27: 1741–1744

    Google Scholar 

  18. Ling C, Sun S G. Chaotic frequency hopping sequences. IEEE Trans Commun, 1998, 46: 1433–1437

    Article  Google Scholar 

  19. Li Z, Cai J P, Chang Y L. Determining the complexity of FH/SS sequence by approximate entropy. IEEE Trans Commun, 2009, 57: 812–820

    Article  Google Scholar 

  20. Pincus S M. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA, 1991, 88: 2297–2301

    Article  MATH  MathSciNet  Google Scholar 

  21. Lempel A, Ziv J. On the complexity of finite sequences. IEEE Trans Inf Theory, 1976, 22: 75–81

    Article  MATH  MathSciNet  Google Scholar 

  22. Hu B Q. Fundamentals of Fuzzy Theory (in Chinese). Wuhan: Wuhan University Press, 2004. 1–5, 103–116

    Google Scholar 

  23. Chen W T, Wang Z Z, Xie H B, et al. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans Neur Syst Reh Eng, 2007, 15: 266–272

    Article  Google Scholar 

  24. Ling C, Sun S G. Chaotic frequency hopping sequences. IEEE Trans Commun, 1998, 46: 1433–1437

    Article  Google Scholar 

  25. Xiao J H, Hu G, Qu Z L. Synchronization of spatiotemporal chaos and its application to multichannel spread spectrum communication. Phys Rev Lett, 1996, 77: 4162–4165

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zan Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Si, J., Li, Z. et al. A new complexity metric for FH/SS sequences using fuzzy entropy. Sci. China Inf. Sci. 54, 1491–1499 (2011). https://doi.org/10.1007/s11432-011-4203-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4203-1

Keywords

Navigation