Skip to main content
Log in

Resistance switching for RRAM applications

  • Special Issue
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Resistive random access memory (RRAM or ReRAM) is a non-volatile memory (NVM) technology that consumes minimal energy while offering sub-nanosecond switching. In addition, the data stability against high temperature and cycling wear is very robust, allowing new NVM applications in a variety of markets (automotive, embedded, storage, RAM). Based on sudden conduction through oxide insulators, the characteristics of RRAM technology have still yet to be fully described. In this paper, we present our current understanding of this very promising technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee H Y, Chen P S, Wu T Y, et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2-based RRAM. In: IEDM 2008, 2008. 297–300

  2. Mott N F. Metal-insulator transition. Rev Mod Phys, 1968, 40: 677–683

    Article  Google Scholar 

  3. Wu Y, Lee B, Wong H P S. Ultra-low power Al2O3-based RRAM with 1 μA RESET current. In: VLSI-TSA 2010. 2010. 136–137

  4. Lee H Y, Chen Y S, Chen P S, et al. Evidence and solutions of Over-RESET problem for HfOx-based resistive memory with sub-ns switching speed and high endurance. In: IEDM 2010. 460–463

  5. Waser R. Resistive non-volatile memory devices. Microelectr Eng, 2009, 86: 1925–1928

    Article  Google Scholar 

  6. Sata A. Resistive switching in transition metal oxides. Mater Today, 2008, 11: 28–36

    Google Scholar 

  7. Taskin A A, Lavrov A N, Ando Y. Achieving fast oxygen diffusion in perovskites by cation ordering. Appl Phy Lett, 2005, 86: 091910

    Article  Google Scholar 

  8. Chevalier C J, Siau C H, Lim S F, et al. A 0.13 μm 64 Mb multi-layered conductive metal oxide memory. In: ISSCC2010. 2010. 260–261

  9. Baek I G, Kim D C, Lee M J, et al. Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application. In: IEDM 2005. 2005. 750–753

  10. Oh J H, Park J H, Lim Y S, et al. Full integration of highly manufacturable 512 Mb PRAM based on 90 nm technology. In: IEDM 2006. 2006

  11. http://www.numonyx.com/EN-US/MEMORYPRODUCTS/PCM/Pages/P8P.aspx

  12. http://www.everspin.com/products.php?hjk=16&a1f3=16Mb

  13. Eliason J, Madan S, McAdams H, et al. An 8Mb 1T1C ferroelectric memory with zero cancellation and mi-cro-granularity redundancy. In: CICC 2005. 2005. 427–430

  14. Schindler C, Thermadam S C P, Waser R, et al. Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans Electr Dev, 2007, 54: 2762–2768

    Article  Google Scholar 

  15. Guan W, Liu M, Long S, et al. On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Appl Phys Lett, 2008, 93: 223506

    Article  Google Scholar 

  16. Dietrich S, Angerbauer M, Ivanov M, et al. A nonvolatile 2-Mbit CBRAM memory core featuring advanced read and program control. IEEE J Solid-State Circ, 2007, 42: 839–845

    Article  Google Scholar 

  17. Kozicki M N, Gopalan C, Balakrishnan M, et al. A low-power nonvolatile switching element based on cop-per-tungsten oxide solid electrolyte. IEEE Trans Nanotech, 2006, 5: 1–10

    Article  Google Scholar 

  18. Thermadam S P, Bhagat S K, Alford T L, et al. Influence of Cu diffusion conditions on the switching of Cu-SiO2-based resistive memory devices. Thin Solid Films, 2009, 518: 3293–3298

    Article  Google Scholar 

  19. Ono K, Kurotshuchi K, Fujisaki Y, et al. Resistive switching ion-plug memory for 32-nm technology node and beyond. In: SSDM 2008. 2008. 1164–1165

  20. Jo H, Lu W. CMOS compatible nanoscale nonvolatile resistance switching memory. Nano Lett, 2008, 8: 392–397

    Article  Google Scholar 

  21. Zhuge F, Dai W, He C L, et al. Nonvolatile resistive switching memory based on amorphous carbon. Appl Phys Lett, 2010, 96: 163505

    Article  Google Scholar 

  22. Kayashima S, Takahashi K, Motoyama M, et al. Control of tunnel resistance of nanogaps by field-emission-induced electromigration. Jap J Appl Phys, 2007, 46: L907–909

    Article  Google Scholar 

  23. Bernard Y, Gonon P, Jousseaume V. Resistance switching of Cu/SiO2 memory cells studied under voltage and currentdriven modes. Appl Phys Lett, 2010, 96: 193502

    Article  Google Scholar 

  24. Kim K M, Choi B J, Hwang C S. Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films. Appl Phys Lett, 2007, 90: 242906

    Article  Google Scholar 

  25. Xu N, Gao B, Liu L F, et al. A unified physical model of switching behavior in oxide-based RRAM. In: 2008 Symposium on VLSI Technology, 2008. 100–101

  26. Sim H, Seong D J, Chang M, et al. Excellent resistance switching characteristics of Pt/single-crystal Nb-doped SrTiO3 Schottky junction. In: Non-Volatile Semiconductor Memory Workshop, 2006. 88–89

  27. Sharia O, Tse K, Robertson J, et al. Extended Frenkel pairs and band alignment at metal-oxide interfaces. Phys Rev B, 2009, 79: 125305

    Article  Google Scholar 

  28. Liang C, Terabe K, Hasegawa T, et al. Resistance switching in anodic oxidized amorphous TiO2 films. Appl Phys Exp, 2008, 1: 064002

    Article  Google Scholar 

  29. Hass G, Bradford A P. Optical properties and oxidation of evaporated titanium films. J Opt Soc Am A, 1957, 47: 125–129

    Article  Google Scholar 

  30. Ferrari S, Scarel G. Oxygen diffusion in atomic layer deposited ZrO2 and HfO2 thin films on Si (100). J Appl Phys, 2004, 96: 144–149

    Article  Google Scholar 

  31. Busch B W, Schulte W H, Garfunkel E, et al. Oxygen exchange and transport in thin zirconia films on Si (100). Phys Rev B, 2000, 62: 290–293

    Article  Google Scholar 

  32. Kim I, Ahn S D, Cho B W, et al. Microstructure and electrical properties of tantalum oxide thin film prepared by electron-cyclotron resonance plasma-enhanced chemical vapor deposition. Jap J Appl Phys, 1994, 33: 6691–6698

    Article  Google Scholar 

  33. Gulino D A. Oxygen barrier coatings for enhanced stability of polyimide composites at elevated temperatures. In: NASA 1994, 1994

  34. Wei Z, Kanzawa Y, Arita K, et al. Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism. In: IEDM 2008. 2008. 293–296

  35. Chen Y S, Lee H Y, Chen P S, et al. Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity. In: IEDM 2009. 2009. 105–108

  36. Kim H D, An H M, Kim K C. Large resistive-switching phenomena observed in Ag/Si3N4/Al memory cells. Semicon Sci Tech, 2010, 25: 065002

    Article  Google Scholar 

  37. Pandian R, Kooi B J, Palasantzas G, et al. Polarity-dependent reversible resistance switching in Ge-Sb-Te phase-change thin films. Appl Phys Lett, 2007, 91: 152103

    Article  Google Scholar 

  38. Cheung K P. A physics-based, unified gate-oxide breakdown model. In: IEDM 1999. 1999. 719–722

  39. Chang S H, Chae S C, Lee S B, et al. Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors. Appl Phys Lett, 2008, 92: 183507

    Article  Google Scholar 

  40. Black J R. Electromigration—a brief survey and some recent results. In: Proc. IEEE Intl. Reliability Phys. Symposium, 1968. 338–347

  41. Lee H Y, Chen Y S, Chen P S, et al. Comprehensive study of read disturb immunity and optimal read scheme for high speed HfOx-based RRAM with Ti layer. In: VLSI TSA 2010. 2010. 132–133

  42. Meyer R, Schloss L, Brewer J, et al. Oxide dual-layer memory element for scalable non-volatile cross-point memory technology. In: NVMTS 2008

  43. Tseng Y H, Huang C E, Kuo C H, et al. High density and ultra small cell size of contact ReRAM (CR-RAM) in 90 nm CMOS logic technology and circuits. In: IEDM 2009. 2009. 109–112

  44. Tsunoda K, Kinoshita K, Noshiro H, et al. Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 V. In: IEDM 2007. 2007. 767–770

  45. Sheu S S, Chiang P C, Lin W P, et al. A 5 ns fast write multi-level non-volatile 1 K bits RRAM memory with advance write Scheme. In: 2009 Symposium on VLSI Circuits. 2009. 82–83

  46. Kim M G, Kim S M, Choi E J. Study of transport and dielectric of resistive memory states in NiO thin film. Jpn J Appl Phys, 2005, 44: L1301–L1303

    Article  Google Scholar 

  47. McWhan D B, Menth A, Remeika J P. Metal insulator transitions in transition metal oxides. J Phys Colloq, 1971, 32: C1-1079–C1-1085

    Article  Google Scholar 

  48. Wang C H, Tsai Y H, Lin K C, et al. 3-Dimensional 4F2 ReRAM cell with CMOS compatible logic process. In: IEDM 2010, in press

  49. Servalli G. A 45 nm generation phase change memory technology. In: IEDM 2009. 2009. 113–116

  50. Taur Y, Ning T H. Fundamentals of Modern VLSI Devices. Cambridge: Cambridge University Press, 2009. 64–70

    Google Scholar 

  51. Singh R, Richmond J. SiC power Schottky diodes in power factor correction circuits. In: Cree Application Note, 2002

  52. Krzysztof S, Speier W, Bihlmayer G, et al. Switching the electrical resistance of individual dislocations in singlecrystalline SrTiO3. Nat Mater, 2006, 5: 312–320

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick T. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, F.T., Lee, H., Chen, Y. et al. Resistance switching for RRAM applications. Sci. China Inf. Sci. 54, 1073–1086 (2011). https://doi.org/10.1007/s11432-011-4217-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4217-8

Keywords

Navigation