Skip to main content
Log in

Variability in nanoscale CMOS technology

  • Special Issue
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Moore’s Law technology scaling has improved VLSI performance by five orders of magnitude in the last four decades. As advanced technologies continue the pursuit of Moore’s Law, a variety of challenges will need to be overcome. One of these challenges is management of process variation. This paper discusses the importance of process variation in modern CMOS transistor technology, reviews front-end variation sources, presents device and circuit variation measurement techniques (including circuit and SRAM data from the 32 nm node), and compares recent intrinsic transistor variation performance from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuhn K. CMOS transistor scaling past 32 nm. In: Advanced Semiconductor Manufacturing Conference, ASMC, 2010

  2. Wang Y, Bhattacharya U, Hamzaoglu F, et al. A 4.0 GHz 291 Mb voltage-scalable SRAM design in 32 nm high-κ metal-gate CMOS with integrated power management. In: IEEE International Solid-State Circuits Conference, 2009. ISSCC, 2009

  3. Kuhn K, Kenyon C, Kornfeld A, et al. Managing process variation in intel’s 45 nm CMOS technology. Intel Tech J, 2008, 12: 93–110

    Google Scholar 

  4. Capodieci L. From optical proximity correction to lithography-driven physical design (1996–2006): 10 years of resolution enhancement technology and the roadmap enablers for the next decade. In: Proceedings SPIE, Volume 6154, 615401

  5. Asenov A, Kaya S, Brown A R. Intrinsic parameter fluctuations in decananometer MOSFETs introduced by gate line edge roughness. IEEE Trans Electr Dev, 2003, 50: 1254–1260

    Article  Google Scholar 

  6. Nag S, Chatterjee A, Taylor K, et al. Comparative evaluation of gap-fill dielectrics in shallow trench isolation for sub-0.25 μm technologies. In: IEEE International Electron Devices Meeting, IEDM Technical Digest, 1996. 841–845

  7. Steigerwald J. Chemical mechanical polish: The enabling technology. In: IEEE International Electron Devices Meeting, IEDM Technical Digest, 2008. 37–40

  8. Koh M, Mizubayashi W, Iwamoto K, et al. Limit of gate oxide thickness scaling in MOSFETs due to apparent threshold voltage fluctuation introduced by tunnelling leakage current. IEEE Trans Electr Dev, 2001, 48: 259–264

    Article  Google Scholar 

  9. Kaushik V S, O’sullivan B J, Pourtois G, et al. Estimation of fixed charge densities in hafnium-silicate gate dielectrics. IEEE Trans Electr Dev, 2006, 53: 2627–2633

    Article  Google Scholar 

  10. Wen H C, Harris H R, Young C D, et al. On oxygen deficiency and fast transient charge-trapping effects in high-k dielectrics. IEEE Electr Dev Lett, 2006, 27: 984–987

    Article  Google Scholar 

  11. Kuhn K. Variation in 45 nm and implications for 32 nm and beyond. In: International Conference on CMOS Variability, 2009

  12. Packan P, Akbar S, Armstrong M, et al. High performance 32 nm logic technology featuring 2 nd generation high-k + metal gate transistors. In: IEEE International Electron Devices Meeting, IEDM Technical Digest, 2009. 659–662

  13. Stolk P, Widdershoven F, Klaassen D. Modeling statistical dopant fluctuations in MOS transistors. IEEE Trans Electr Dev, 1998, 45: 1960–1971

    Article  Google Scholar 

  14. Takeuchi K, Fukai T, Tsunomura T, et al. Understanding random threshold voltage fluctuation by comparing multiple fabs and technologies. In: IEEE International Electron Devices Meeting, IEDM Technical Digest, 2007. 467–470

  15. Asenov A. Random dopant induced threshold voltage lowering and fluctuations in sub-0.1 μm MOSFET’s: A 3-D “atomistic simulation study”. IEEE Trans Electr Dev, 1998, 45: 2505–2513

    Article  Google Scholar 

  16. Tanaka T, Usuki T, Futatsugi T, et al. Vth fluctuation induced by statistical variation of pocket dopant profile. IEEE International Electron Devices Meeting, IEDM Technical Digest, 2000. 271–274

  17. Ahsan I, Zamdmer N, Glushchenkov O, et al. RTA-driven intra-die variations in stage delay, and parametric sensitivities for 65 nm technology. In: 2006 Symposium on VLSI Technology, Digest of Technical Papers, 2006. 170–171

  18. Tsang Y L, Chattopadhyay S, Uppal S, et al. Modeling of the threshold voltage in strained Si/Si1-x GexSi1-yGex CMOS architectures. IEEE Trans Electr Dev, 2007, 54: 3040–3048

    Article  Google Scholar 

  19. Weber O, Faynot O, Andrieu F, et al. High immunity to threshold voltage variability in undoped ultra-thin FDSOI MOSFETs and its physical understanding. In: IEEE International Electron Devices Meeting, IEDM Technical Digest, 2008. 245–248

  20. Pang L T, Qian K, Spanos C J, et al. Measurement and analysis of variability in 45 nm strained-Si CMOS technology. IEEE J Solid State Circ, 2009, 44: 2233–2243

    Article  Google Scholar 

  21. Brown A R, Roy G, Asenov A. Poly-Si-gate-related variability in decananometer MOSFETs with conventional architecture. IEEE Trans Electr Dev, 2007, 54: 3056–3063

    Article  Google Scholar 

  22. Zhang Y, Li J, Grubbs M, et al. Physical model of the impact of metal grain work function variability on emerging dual metal gate MOSFETs and its implication for SRAM reliability. In: IEEE International Electron Devices Meeting, 2009. 57–60

  23. Seevinck E, List F, Lohstroh J. Static-noise margin analysis of MOS SRAM cells. IEEE J Solid-State Circ, 1987, 22: 748–754

    Article  Google Scholar 

  24. Mizuno T, Okamura J I, Toriumi A. Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFET’s. IEEE Trans Electr Dev, 1994, 41: 2216–2221

    Article  Google Scholar 

  25. Pelgrom M J M, Duinmaijer AC J, Welbers A P G. Matching properties of MOS transistors. IEEE J Solid-State Circ, 1989, 24: 1433–1439

    Article  Google Scholar 

  26. Arnaud F, Thean A, Eller M, et al. Competitive and cost effective high-k based 28 nm CMOS technology for low power applications. In: IEEE International Electron Devices Meeting, IEDM Technical Digest, 2009. 651–654

  27. Andrieu F, Weber O, Mazurier J, et al. Low leakage and low variability ultra-thin body and buried oxide (UT2B) SOI technology for 20 nm low power CMOS and beyond. In: 2010 Symposium on VLSI Technology, Digest of Technical Papers, 2010. 57–58

  28. Liu Y X. On the gate-stack origin threshold voltage variability in scaled FinFETs and multi-FinFETs. In: 2010 Symposium on VLSI Technology, Digest of Technical Papers, 2010. 101–102

  29. Putra A T, Tsunomura T, Nishida A, et al. A new methodology for evaluating VT variability considering dopant depth profile. In: 2009 Symposium on VLSI Technology, Digest of Technical Papers, 2009. 116–117

  30. Kuhn K. Process technology variation. IEEE Trans Electr Dev, 2011, to be published in August 2011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelin Kuhn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, K. Variability in nanoscale CMOS technology. Sci. China Inf. Sci. 54, 936–945 (2011). https://doi.org/10.1007/s11432-011-4219-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4219-6

Keywords

Navigation