Skip to main content
Log in

High frequency performance of nano-scale ultra-thin-body Schottky-barrier n-MOSFETs

  • Research Papers
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The high frequency performances of nano-scale ultra-thin-body (UTB) Schottky-barrier n-MOSFETs (SB-nMOSFETs) are investigated using 2D full-band self-consistent ensemble Monte Carlo method. The UTB SB-nMOSFET devices offer excellent RF performance with high values of f T and f max. The significant dependence of f T and f max on gate voltage and weak dependence on barrier height are demonstrated. Meanwhile, the significant dependence of g m and g ds on both gate voltage and SB height are shown. Moreover, the scalability of f T is outstanding and close to the ideal case (f T ∝ 1/L 2g ). The high frequency performances of 45 nm channel length SB-nMOSFETs at ballistic transport limit are also investigated. Results show that scattering strongly affects the capacitances C gs, C gd and C ds. At ballistic transport limit the f T and f max are almost 10 times larger. The Scattering effects in nano-scale SB-nMOSFETs cannot be neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kedzierski J, Xuan P Q, Anderson E H, et al. Complementary silicide source/drain thin-body MOSFETs for the 20 nm gate length regime. International Electron Devices Meeting Technical Digest. Piscataway: IEEE Press, 2000. 57–60

    Google Scholar 

  2. Huang C K, Zhang W, Yang C. Two-dimensional numerical simulation of Schottky barrier MOSFET with channel length to 10 nm. IEEE Trans Electron Dev, 1998, 45: 842

    Article  Google Scholar 

  3. Winstead B, Ravaioli U. Simulation of Schottky barrier MOSFETs with a coupled quantum injection Monte Carlo technique. IEEE Trans Electron Dev, 2000, 47: 1241

    Article  Google Scholar 

  4. Zhao Q, Klinkhammer F, Dolle M, et al. Nanometer patterning of epitaxial CoSi2/Si(100) for ultrashort channel Schottky barrier metal oxide semiconductor field effect transistors. Appl Phys Lett, 1999, 74: 454

    Article  Google Scholar 

  5. Connelly D, Clifton P, Faulkner C, et al. Ultra-thin-body fully depleted SOI metal source/drain n-MOSFETs and ITRS low-standby-power targets through 2018. International Electron Devices Meeting Technical Digest. Piscataway: IEEE Press, 2005. 972–975

    Google Scholar 

  6. Larson J M, Snyder J P. Overview and status of metal S/D Schottky-barrier MOSFET technology. IEEE Trans Electron Dev, 2006, 53: 1048–1057

    Article  Google Scholar 

  7. Knoch J, Zhang M, Appenzelle J, et al. Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors. Appl Phys A, 2007, 87: 351–357

    Article  Google Scholar 

  8. Saha A R, Chattopadhyay S, Bose C, et al. Technology CAD of silicided Schottky barrier MOSFET for elevated source C drain engineering. Mat Sci Eng B, 2005, 124–125: 424–430

    Article  Google Scholar 

  9. Jang M, Kim Y, Shin J, et al. A 50-nm-gate-length erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field-effect transistor. Appl Phys Lett, 2004, 84: 741–743

    Article  Google Scholar 

  10. Knoch J, Appenzeller J. Impact of the channel thickness on the performance of Schottky barrier metal-oxide-semiconductor field-effect transistors. Appl Phys Lett, 2002, 81: 3082

    Article  Google Scholar 

  11. Jing G, Lundstrom M S. A computational study of thin-body, double-gate, Schottky barrier MOSFETs. IEEE Trans Electron Dev, 2002, 49: 1897

    Article  Google Scholar 

  12. Valentin R, Dubois E, Raskin J P, et al. RF small-signal analysis of Schottky-barrier p-MOSFET. IEEE Trans Electron Dev, 2008, 55: 1192–1202

    Article  Google Scholar 

  13. Fritze M, Chen C L, Calawa S, et al. High-speed Schottky-barrier pMOSFET with f T = 280 GHz. IEEE Electr Device L, 2004, 25: 220–222

    Article  Google Scholar 

  14. Pearman D J, Pailloncy G, Raskin J P, et al. Static and high-frequency behavior and performance of Schottky-barrier p-MOSFET devices. IEEE Trans Electron Dev, 2007, 54: 2796–2802

    Article  Google Scholar 

  15. Du G, Liu X Y, Sun L, et al. Quantum Boltzmann equation solved by Monte Carlo method for nano-scale semiconductor devices simulation. Chinese Phys, 2006, 15: 177

    Article  Google Scholar 

  16. Sun L, Liu X Y, Du G, et al. Monte Carlo simulation of Schottky contact with direct tunneling model. Semicond Sci Tech, 2003, 18: 576

    Article  Google Scholar 

  17. Sze S M, Crowell C R, Kahng D. Photoelectric determination of the image force dielectric constant for hot electrons in Schottky barriers. J Appl Phys, 1964, 35: 2534–2536

    Article  Google Scholar 

  18. Chelikowsky J R, Cohen M L. Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors. Phys Rev B, 1976, 14: 556

    Article  Google Scholar 

  19. Fiegna C. Physics-based analysis of RF performance of small geometry MOSFETs: methodology and application to the evaluation of the effects of scaling. International Electron Devices Meeting Technical Digest. Piscataway: IEEE Press, 1999. 543–546

    Google Scholar 

  20. Babiker S, Asenov A, Cameron N, et al. Complete Monte Carlo RF analysis of “real” short-channel compound FET’s. IEEE Trans Electron Dev, 1998, 45: 1644–1652

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Du.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, G., Liu, X. & Han, R. High frequency performance of nano-scale ultra-thin-body Schottky-barrier n-MOSFETs. Sci. China Inf. Sci. 54, 1756–1761 (2011). https://doi.org/10.1007/s11432-011-4267-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4267-y

Keywords

Navigation