Skip to main content
Log in

Achieve load balancing with a dynamic re-routing CICQ switching scheme

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Multi-path based routing and switching can achieve network-wide load balancing and reduce the port conflicts of switching devices. Motivated by this novel idea, in this paper, through analyzing the feasibility of implementing multi-next-hops in core switching networks comprehensively, we advance a switching scheme called MHRS (multi-next-hop re-routing switch) and a forwarding table management scheme called HMFT (hierarchical multi-stage forwarding table) to support multi-next-hop dynamical re-routing. MHRS implements dynamical re-routing in the switches according its congestion status to achieve real-time load balancing, while HMFT can provide traffic with different forwarding paths based on their QoS requirements. Theoretical analysis and simulation results show that switches equipped with HMFT and MHRS can provide good delay and throughput performance. Besides, they can reduce port conflicts significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teixeira R. Characterizing and measuring path diversity of internet topologies. In: Proceedings of ACM SIGMETRICS, New York: ACM Press, 2003. 304–305

    Google Scholar 

  2. Savage S. The end-to-end effects of internet path selection. In: Proceedings of ACM SIGCOMM, New York: ACM Press, 1999. 289–299

    Google Scholar 

  3. Banner R, Orda A. Multipath routing algorithms for congestion minimization. IEEE/ACM Trans Networking, 2007, 15: 413–424

    Article  Google Scholar 

  4. He J Y, Shen R Z, Li Y, et al. DaVinci: Dynamically adaptive virtual networks for a customized internet. In: Proceedings of ACM CoNEXT Conference, New York: ACM Press, 2008

    Google Scholar 

  5. Feldmann A, Greenberg A, Lund C, et al. Deriving traffic demands for operational IP networks: methodology and experience. IEEE/ACM Trans Networking, 2001, 9: 257–270

    Article  Google Scholar 

  6. Xu D H, Chiang M, Rexford J. DEFT: Distributed exponentially weighted flow splitting. In: Proceedings of IEEE INFOCOM, Piscataway: IEEE Press, 2007: 71–79

    Google Scholar 

  7. Anti M, Maksi N, Knězevi P, et al. Two phase load balanced routing using OSPF. IEEE J Sel Areas Commun, 2010, 28: 51–59

    Article  Google Scholar 

  8. Zhu D, Gritter M, Cheriton D. Feedback based routing. ACM SIGCOMM Comput Commun Rev, 2003, 33: 71–76

    Article  Google Scholar 

  9. Kaur H, Kalyanaraman, Weiss A, et al. BANANAS: An evolutionary framework for explicit and multipath routing in the Internet. In: Proceedings Future Directions in Network Architecture, New York: ACM Press, 2003. 277–288

    Chapter  Google Scholar 

  10. Raghavan B, Snoeren A. A system for authenticated policy-compliant routing. In: Proceedings of ACM SIGCOMM. New York: ACM Press, 2004. 167–178

    Google Scholar 

  11. Argyraki K, Cheriton D. Loose source routing as a mechanism for traffic policies. In: Proceedings of Future Directions in Network Architecture. New York: ACM Press, 2004. 57–64

    Chapter  Google Scholar 

  12. Yang X. NIRA: A new inter-domain routing architecture. IEEE/ACM Trans Networking, 2003, 15: 775–788

    Article  Google Scholar 

  13. Andersen D, Balakrishnan H, Kaashoek F, et al. Resilient overlay networks. ACM SIGOPS Operating Syst Rev, 2001, 35: 131–145

    Article  MATH  Google Scholar 

  14. Walton D, Retana A, Chen E. Advertisement of multiple paths in BGP. Internet Draft, draft-walton-bgp-add-paths-05.txt, 2006

  15. Xu W, Rexford J. MIRO: Multi-path interdomain routing. ACM SIGCOMM Comput Commun Rev, 2006, 36: 171–182

    Article  Google Scholar 

  16. McKeown N. Scheduling algorithms for input-queued cell switches. Dissertation of Doctoral Degree, California: University of California, 1995

    Google Scholar 

  17. Nabeshima M. Performance evaluation of a combined input- and crosspoint-queued switch. IEICE Trans Commun, 2000, E83-B: 737–741

    Google Scholar 

  18. Rojas-Cessa R, Oki E, Jing Z, et al. On the combined input-crosspoint buffered switch with round-robin arbitration. IEEE Trans Commun, 2005, 53: 1945–1951

    Article  Google Scholar 

  19. Luo J Z, Lee Y, Wu J. DRR: A fast high-throughput scheduling algorithm for combined input-crosspoint-queued (CICQ) switches. In: Proceedings of the IEEE MASCOTS. Washington DC: IEEE Press, 2005. 329–332

    Google Scholar 

  20. Javidi T, Magill R, Hrabik T. A high-throughput scheduling algorithm for a buffered crossbar switch fabric. In: Proceedings of the IEEE Int Conf on Communications (ICC). New York: IEEE Communications Society, 2001. 1586–1591

    Google Scholar 

  21. McKeown N, Mekkittikul A. Starvation free algorithm for achieving 100% throughput in an input queued switch. In: Proceedings of the ICCCN. New York: IEEE Communications Society, 1996. 226–229

    Google Scholar 

  22. Mhamdi L, Hamdi M. MCBF: A high-performance scheduling algorithm for buffered crossbar switches. IEEE Commun Lett, 2003, 7: 451–453

    Article  Google Scholar 

  23. Zhang X, Bhuyan L N. An efficient scheduling algorithm for combined input-crosspoint-queued (CICQ) switches. In: Proceedings of the IEEE Globecom. New York: IEEE Communications Society, 2004. 1168–1173

    Google Scholar 

  24. Chang C S, Hsu Y H, Cheng J, et al. A dynamic frame sizing algorithm for CICQ switches with 100% throughput. In: Proceedings of IEEE INFOCOM. New York: IEEE Communications Society, 2009. 738–746

    Google Scholar 

  25. Shen Y M, Panwar S S, Chao H J. SQUID: A practical 100% throughput scheduler for crosspoint buffered switches. IEEE/ACM Trans Networking, 2008, PP(99): 1

    Google Scholar 

  26. Magill B, Rohrs C, Stevenson R. Output-queued switch emulation by fabrics with limited memory. IEEE J Sel Areas in Commun, 2003, 21: 606–615

    Article  Google Scholar 

  27. Chuang S-T, Iyer S, McKeown N. Practical algorithms for performance guarantees in buffered crossbars. In: Proceedings of IEEE INFOCOM. New York: IEEE Communications Society, 2005. 981–991

    Google Scholar 

  28. Turner J. Strong performance guarantees for asynchronous crossbar schedulers. IEEE/ACM Trans Networking, 2009, 17: 1017–1028

    Article  Google Scholar 

  29. Zhang X, Mohanty S, Bhuyan L. Adaptive max-min fair scheduling in buffered crossbar switches without speedup. In: Proceedings of IEEE INFOCOM. New York: IEEE Communications Society, 2007. 454–462

    Google Scholar 

  30. He S, Sun S, Guan H, et al. On guaranteed smooth switching for buffered crossbar switches. IEEE/ACM Trans Networking, 2008, 16: 718–731

    Article  Google Scholar 

  31. Pan D, Yang Y Y. Localized independent packet scheduling for buffered crossbar switches. IEEE Trans Comput, 2009, 58: 260–274

    Article  MathSciNet  Google Scholar 

  32. Marsan M, Bianco A, Giaccone P, et al. Multicast traffic in input-queued switches: Optimal scheduling and maximum throughput. IEEE/ACM Trans Networking, 2003, 11: 465–477

    Article  Google Scholar 

  33. Hu H. Study on the Key Technologies of Switching and Scheduling in Packet Switching Networks. Dissertation for the Doctoral Degree, Zhengzhou: PLA Information Engineering University, 2010

    Google Scholar 

  34. Shi L, Liu B, Li W J, et al. DS-PPS: A practical framework to guarantee differentiated QoS in terabit routers with parallel packet switch. In: Proceedings of IEEE INFOCOM. New York: IEEE Communications Society, 2006. 1–12

    Chapter  Google Scholar 

  35. Hu H C, Yi P, Guo Y F. Design and implementation of high performance simulation platform for switching and scheduling. J Software, 2008, 19: 1036–1050

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HongChao Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, H., Guo, Y., Yi, P. et al. Achieve load balancing with a dynamic re-routing CICQ switching scheme. Sci. China Inf. Sci. 55, 407–418 (2012). https://doi.org/10.1007/s11432-011-4286-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4286-8

Keywords

Navigation