Skip to main content
Log in

Target tracking in wireless sensor networks using adaptive measurement quantization

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Quantization/compression is usually adopted in wireless sensor networks (WSNs) since each sensor node typically has very limited power supply and communication bandwidth. We consider the problem of target tracking in a WSN with quantized measurements in this paper. Attention is focused on the design of measurement quantizer with adaptive thresholds. Based on the probability density function (PDF) of the signal amplitude measured at a random location and by maximizing the entropy, an adaptive design method for quantization thresholds is proposed. Due to the nonlinear measuring and quantization models, particle filtering (PF) is adopted in the fusion center (FC) to estimate the target state. Posterior Cramér-Rao lower bounds (CRLBs) for tracking accuracy using quantized measurements are also derived. Finally, a simulation example on tracking single target with noisy circular trajectories is provided to illustrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akyildiz I F, Su W, Sankarasubramanizm Y, et al. Wireless sensor networks: a survey. Comput Netw, 2002, 38: 393–422

    Article  Google Scholar 

  2. Yick J, Mukherjee B, Ghosal D. Wireless sensor network survey. Comput Netw, 2008, 52: 2292–2330

    Article  Google Scholar 

  3. Valera M, Velastin S A. Intelligent distributed surveillance systems: a review. IEE Proc Vision Image Signal Process, 2005, 152: 192–204

    Article  Google Scholar 

  4. Wang Q X, Chen W P, Zheng R, et al. Acoustic target tracking using tiny wireless sensor devices. In: Proceedings of International Workshop on Information Processing in Sensor Networks, Berlin: Springer-Verlag, 2003. 642–657

    Chapter  Google Scholar 

  5. Li X, Shu W, Li M, et al. Performance evaluation of vehicle-based mobile sensor networks for traffic monitoring. IEEE Trans Vehic Tech, 2009, 58: 1647–1653

    Article  Google Scholar 

  6. Xiao J J, Cui S, Luo Z Q, et al. Power scheduling of universal decentralized estimation in sensor networks. IEEE Trans Signal Process, 2006, 54: 413–421

    Article  Google Scholar 

  7. Zhou P, Yao J H, Pei J L. Implementation of an energy-efficient scheduling scheme based on pipeline flux monitoring networks. Sci China Ser F Inf Sci, 2009, 52: 1632–1639

    Article  MATH  Google Scholar 

  8. Ribeiro A, Giannakis G B, Rounmeliotis S E. SOI-KF: Distributed Kalman filtering with low-cost communications using the sign of innovations. IEEE Trans Signal Process, 2006, 54: 4782–4795

    Article  Google Scholar 

  9. Djuric P M, Vemula M, Bugallo M F. Target tracking by particle filtering in binary sensor networks. IEEE Trans Signal Process, 2008, 56: 2229–2238

    Article  MathSciNet  Google Scholar 

  10. Ruan Y, Willett P, Marrs A, et al. Practical fusion of quantized measurements via particle filtering. IEEE Trans Aerosp Electron Syst, 2008, 44: 15–29

    Article  Google Scholar 

  11. Msechu E J, Roumeliotis S I, Ribeiro A, et al. Decentralized quantized Kalman filtering with scalable communication cost. IEEE Trans Signal Process, 2008, 56: 3727–3741

    Article  MathSciNet  Google Scholar 

  12. Xiang M, Han C. Global optimization for distributed and quantized Bayesian detection system. In: Proceedings of 3rd International Conference on Information Fusion, Paris, 2002. THB4/3-THB4/8

  13. Li H, Fang J. Distributed adaptive quantization and estimation for wireless sensor networks. IEEE Signal Process Lett, 2007, 14: 669–672

    Article  Google Scholar 

  14. Vemula M, Bugallo M F, Djuri P M. Particle filtering-based target tracking in binary sensor networks using adaptive thresholds. In: 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Virgin Islands, 2007. 165–168

  15. Van Tree H L. Detection, Estimation and Modulation Theory. New York: John Wiley & Sons, 1968

    Google Scholar 

  16. Bar-Shalom Y, Li X R, Kirubarajan T. Estimation with Applications to Tracking and Navigation. New York: Wiley, 2001

    Book  Google Scholar 

  17. Tickavsky P, Muravchik C H, Nehorai A. Posterior Cramér-Rao bounds for discrete-time nonlinear filtering. IEEE Trans Signal Process, 1998, 46: 1386–1396

    Article  Google Scholar 

  18. Xu B, Wu Z, Wang Z. On the Cramér-Rao lower bound for biased bearings-only maneuvering target tracking. Signal Process, 2007, 87: 3175–3189

    Article  MATH  Google Scholar 

  19. Hu C, Long T, Zeng T. The possibility of isolated target 3-D position estimation and optimal receiver position determination in SS-BSAR. Sci China Ser F Inf Sci, 2008, 51: 1372–1383

    Article  Google Scholar 

  20. Xu J, Peng Y, Wan Q, et al. Doppler distributed clutter model of airborne radar and its parameters estimation. Sci China Ser F Inf Sci, 2004, 47: 557–586

    Google Scholar 

  21. Duan Z, Jilkov V P, Li X R. Posterior Cramér-Rao bounds for state estimation with quantized measurement. In: 40th Southeastern Symposium on System Theory, New Orleans, 2008. 376–380

  22. Sheng X, Hu Y H. Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks. IEEE Trans Signal Process, 2005, 53: 44–53

    Article  MathSciNet  Google Scholar 

  23. Pham T, Sadler B M, Papadopulos H. Energy-based source localization via ad-hoc acoustic sensor network. In: IEEE Workshop on Statistical Signal Processing, St. Louis, 2003. 387–390

  24. Arulampalam M S, Maskell S, Gordon N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process, 2002, 50: 174–188

    Article  Google Scholar 

  25. Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc F Radar Signal Process, 1993, 140: 107–113

    Article  Google Scholar 

  26. Ristic B, Arulampalam S, Gordon N. Beyond the Kalman Filtering: Particle Filtering for Tracking Application, Boston: Artech House, 2004

    Google Scholar 

  27. Zhou Y, Li J, Wang D. Unscented Kalman filtering based quantized innovation fusion for target tracking in WSNs with Feedback. In: Proceedings of 8th International Conference on Machine Learning and Cybernetics, Baoding, 2009. 1457–1463

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Li, J. & Wang, D. Target tracking in wireless sensor networks using adaptive measurement quantization. Sci. China Inf. Sci. 55, 827–838 (2012). https://doi.org/10.1007/s11432-011-4327-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4327-3

Keywords

Navigation