Skip to main content
Log in

Numerical optimization method for HJI equations derived from robust receding horizon control schemes and controller design

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper addresses how to numerically solve the Hamilton-Jacobin-Isaac (HJI) equations derived from the robust receding horizon control schemes. The developed numerical method, the finite difference scheme with sigmoidal transformation, is a stable and convergent algorithm for HJI equations. A boundary value iteration procedure is developed to increase the calculation accuracy with less time consumption. The obtained value function can be applied to the robust receding horizon controller design of some kind of uncertain nonlinear systems. In the controller design, the finite time horizon is extended into the infinite time horizon and the controller can be implemented in real time. It can avoid the on-line repeated optimization and the dependence on the feasibility of the initial state which are encountered in the traditional robust receding horizon control schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee J, Yu Z. Worst-case formulations of model predictive control for systems with bounded parameters. Automatica, 1997, 33: 763–781

    Article  MATH  MathSciNet  Google Scholar 

  2. Basar T, Bernhard P. H -optimal Control and Related Minimax Problems. Boston: Birkhäuser, 1991

    MATH  Google Scholar 

  3. Elliott R, Kalton N. Existence of value in differential games. Ser Memoires of the American Mathematical Society. Providence, Rhode Island: American Mathematical Society, 1972. 126

    Google Scholar 

  4. Henson M. Nonlinear model predictive control: current status and future directions. Comput Chem Eng, 1998, 23: 187–202

    Article  Google Scholar 

  5. Garcia C, Prett D, Morari M. Model predictive control: theory and practice-a survey. Automatica, 1989, 57: 265–293

    Google Scholar 

  6. Morari M, Lee J. Model predictive control: past, present and future. Comput Chem Eng, 1999, 23: 667–682

    Article  Google Scholar 

  7. Chen H, Allgöwer F. A quasi-infinity horizon nonlinear model predictive control scheme with guaranteed stability. Automatica, 1998, 34: 1205–1217

    Article  MATH  Google Scholar 

  8. Rawlings J, Muske K. The stability of constrained receding horizon control. IEEE Trans Autom Control, 1993, 38: 1512–1516

    Article  MATH  MathSciNet  Google Scholar 

  9. Rawling J, Meadows E, Muske K. Nonlinear model predictive control: a tutorial and survey. In: Proceedings of IFAC ADCHEM. Kyoto, Japan, 1994. 185–197

  10. Richalet J. Industrial applications of model based predictive control. Automatica, 1993, 29: 1251–1274

    Article  MathSciNet  Google Scholar 

  11. Richalet J, Testud L, Papon J. Model predictive heuristic control: Application to industrial processes. Automatica, 1978, 14: 413–428

    Article  Google Scholar 

  12. Bitmead R, Gevers M, Wertz V. Adaptive Optimal Control: The Thinking Man’s GPC. New York: Prentice Hall, 1990

    MATH  Google Scholar 

  13. Polak E, Yang T. Moving horizon control of linear systems with input saturation and plant uncertainty part 1. Robustness. Int J Control, 1993, 58: 613–638

    Article  MATH  MathSciNet  Google Scholar 

  14. Mayne D, Michalska H. Receding horizon control of nonlinear system. IEEE Trans Autom Control, 1990, 35: 814–824

    Article  MATH  MathSciNet  Google Scholar 

  15. Michalska H, Mayne D. Robust receding horizon control of constrained nonlinear system. IEEE Trans Autom Control, 1993, 38: 1623–1633

    Article  MATH  MathSciNet  Google Scholar 

  16. Campo P, Morari M. Robust model predictive control. In: Proceedings of American Control Conference, Minneapolis. 1987. 1021–1026

  17. Camacho E, Bordóns C. Model Predictive Control. Berlin: Springer-Verlag, 1999

    Google Scholar 

  18. Kothare M, Balakrishnan V, Morari M. Robust constrained model predictive control using linear matrix inequalities. Automatica, 1996, 32: 1361–1379

    Article  MATH  MathSciNet  Google Scholar 

  19. Mhaskar P, El-Farra N, Christofides P. Predictive control of switched nonlinear systems with scheduled mode transitions. IEEE Trans Autom Control, 2005, 50: 1670–1680

    Article  MathSciNet  Google Scholar 

  20. Song C. Numerical optimization method for HJB equations with its application to receding horizon control schemes. In: Proceedings of IEEE Conference on Decision and Control, Shanghai, China, 2009. 333–338

  21. Song C, Ye J, Liu D, Kang Q. Generalized receding horizon control of fuzzy systems based on numerical optimization algorithm. IEEE Trans Fuzzy Syst, 2009, 17: 1336–1352

    Article  Google Scholar 

  22. Kushner H, Dupuis P. Numerical Methods for Stochastic Control Problems in Continuous Time. 2nd ed. New York: Springer-Verlag, 2001

    MATH  Google Scholar 

  23. Kushner H. Numerical approximations for stochastic differential games. SIAM J Control Optim, 2002, 41: 457–486

    Article  MATH  MathSciNet  Google Scholar 

  24. Song Q S. Convergence of markov chain approximation on generalized HJB equation and its applications. Automatica, 2008, 44: 761–766

    Article  Google Scholar 

  25. Evans L, Souganidis P. Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations. Indiana Univ Math J, 1984, 33: 773–797

    Article  MATH  MathSciNet  Google Scholar 

  26. Fleming W, Soner H. Controlled Markov Processes and Viscosity Solutions. 2nd ed. New York: Springer-Verlag, 2006.

    MATH  Google Scholar 

  27. Barles G, Souganidis P. Convergence of approximation schemes for fully nonlinear second order equations. J Asympt Anal, 1991, 4: 271–283

    MATH  MathSciNet  Google Scholar 

  28. Souganidis P. Two-player zero-sum differential games and viscosity solutions. In: Bardi M, Raghavan T, Parthasarathy T, eds. Stochastic and Differential Games: Theory and Numerical Methods, Ser Annals of International Society of Dynamic Games. Boston: Birkhäuser, 1999, 4: 69–104

    Google Scholar 

  29. Ye J. Optimal life insurance purchase, consumption and portfolio under an uncertain life. PhD Thesis. USA: University of Illinois at Chicago, 2006

    Google Scholar 

  30. Bellman R. Dynamic Programming. 3rd ed. Princeton NJ: Princeton University Press, 1962

    MATH  Google Scholar 

  31. Isidori A. Nonlinear Control system-an Introduction. 2nd ed. Berlin: Spring Verlag, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChongHui Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, C., Bian, C., Zhang, X. et al. Numerical optimization method for HJI equations derived from robust receding horizon control schemes and controller design. Sci. China Inf. Sci. 55, 214–227 (2012). https://doi.org/10.1007/s11432-011-4403-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4403-8

Keywords

Navigation