Skip to main content
Log in

Adaptive fuzzy decentralized control for nonlinear large-scale systems based on high-gain observer

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

An adaptive fuzzy decentralized backstepping output-feedback control approach is proposed for a class of nonlinear large-scale systems with completely unknown functions, the interconnections mismatched in control inputs, and without the measurements of the states. Fuzzy logic systems are employed to approximate the unknown nonlinear functions, and an adaptive high-gain observer is developed to estimate the unmeasured states. Using the designed high-gain observer, and combining the fuzzy adaptive control theory with backstepping approach, an adaptive fuzzy decentralized backstepping output-feedback control scheme is developed. It is proved that the proposed control approach can guarantee that all the signals of the closed-loop system are semiglobally uniformly ultimately bounded (SUUB), and that the observer errors and the tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters. Finally, a simulation example is provided to show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang L X. Adaptive Fuzzy Systems and Control. Upper Saddle River, NJ: Prentice Hall, 1994

    Google Scholar 

  2. Sanner R M, Slotine J J. Gaussian networks for direct adaptive control. IEEE Trans Neural Net, 1992, 3: 837–863

    Article  Google Scholar 

  3. Spooner J T, Passino K M. Decentralized adaptive control of nonlinear systems using radial basis neural networks. IEEE Trans Autom Control, 1999, 44: 2050–2057

    Article  MATH  MathSciNet  Google Scholar 

  4. Tong S C, Li H X, Chen G R. Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems. IEEE Trans Syst Man Cybern-Part B, 2004, 34: 770–774

    Article  Google Scholar 

  5. Huang S N, Tan K K, Lee T H. Decentralized control of a class of large-scale nonlinear systems using neural networks. Automatica, 2005, 41: 1645–1649

    Article  MATH  MathSciNet  Google Scholar 

  6. Huang Y S, Zhou D Q, Chen X X. Decentralized direct adaptive output feedback fuzzy H-infinity tracking design of large-scale nonafine nonlinear systems. Nonlinear Dynamics, 2009, 58: 153–167

    Article  MATH  MathSciNet  Google Scholar 

  7. Lin D, Wang X Y. Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation. Fuzzy Sets Syst, 2010, 151: 2066–2080

    Article  Google Scholar 

  8. Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York: Wiley, 1995

    Google Scholar 

  9. Jain S, Khorrami F. Decentralized adaptive control of a class of large-scale interconnected nonlinear systems. IEEE Trans Autom Control, 1997, 42: 136–157

    Article  MATH  MathSciNet  Google Scholar 

  10. Wen C Y, Soh Y C. Decentralized adaptive control using integrator backstepping. Automatica, 1997, 33: 1719–1724

    Article  MathSciNet  Google Scholar 

  11. Jain S, Khorrami F. Decentralized adaptive output feedback design for large-scale nonlinear systems. IEEE Trans Autom Control, 1997, 42: 729–735

    Article  MATH  MathSciNet  Google Scholar 

  12. Jiang Z P. Decentralized disturbance attenuating output-feedback control for large-scale nonlinear systems. Automatica, 2002, 38: 1407–1415

    Article  MATH  Google Scholar 

  13. Jiang Z P. Decentralized and adaptive nonlinear tracking of large-scale systems via output feedback. IEEE Trans Autom Control, 2000, 45: 2122–2128

    Article  MATH  Google Scholar 

  14. Zhang Y, Wen C Y, Soh Y C. Robust decentralized adaptive stabilization of interconnected systems with guaranteed transient performance. Automatica, 2000, 36: 907–915

    Article  MATH  MathSciNet  Google Scholar 

  15. Ye X D, Chen P, Li D. Decentralized adaptive control for large-scale non-linear systems with unknown high-frequency-gain signs. IEE Proc Control Theory Appl, 2005, 152: 387–391

    Article  Google Scholar 

  16. Yang Y S, Zhou C J. Adaptive fuzzy stabilization for strict-feedback canonical nonlinear systems via backstepping and small-gain approach. IEEE Trans Fuzzy Syst, 2005, 13: 104–114

    Article  Google Scholar 

  17. Zou A M, Hou Z G. Adaptive control of a class of nonlinear pure-feedback systems using fuzzy backstepping approach. IEEE Trans Fuzzy Syst, 2008, 16: 886–897

    Article  Google Scholar 

  18. Wang M, Zhang S Y, Chen B. Direct adaptive neural control for stabilizationof nonlinear time-delay systems. Sci China Inf Sci, 2010, 53: 800–812

    Article  MathSciNet  Google Scholar 

  19. Chen B, Liu X P. Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping and application to chemical processes. IEEE Trans Fuzzy Syst, 2005, 13: 832–847

    Article  Google Scholar 

  20. Chen B, Liu X P, Liu K C, et al. Novel adaptive neural control design for nonlinear MIMO time-delay systems. Automatica, 2009, 46: 1554–1560

    Article  Google Scholar 

  21. Tong S C, Li Y M. Observer-based fuzzy adaptive control for strict-feedback nonlinear systems. Fuzzy Sets Syst, 2009, 160: 1749–1764

    Article  MATH  MathSciNet  Google Scholar 

  22. Tong S C, Li Y M. Robust adaptive fuzzy backstepping output feedback tracking control for nonlinear systems with dynamica uncertaities. Sci China Inf Sci, 2010, 53: 307–324

    Article  MathSciNet  Google Scholar 

  23. Rong M, Wu Q X, Jiang C S. Robust adaptive backstepping control for a class of uncertain nonlinear systems based on disturbance observers. Sci China Inf Sci, 2010, 53: 1201–1215

    Article  MathSciNet  Google Scholar 

  24. Yoo S J, Park J B. Neural-network-based decentralized adaptive control for a class of large-scale nonlinear systems with unknown time-varying delays. IEEE Trans Syst Man Cybern-Part B, 2009, 39: 1316–1323

    Google Scholar 

  25. Chen W S, Li J M. Globally decentralized adaptive backstepping neural network tracking output control for unknown nonlinear interconnectioned systems. Asian J Control, 2010, 12: 96–102

    MathSciNet  Google Scholar 

  26. Chen W S, Li J M. Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Trans Syst Man Cybern-Part B, 2008, 38: 258–266

    Article  Google Scholar 

  27. Tong S C, Liu C L, Li Y M. Fuzzy adaptive decentralized output feedback control for large-scale nonlinear systems with dynamical uncertainties. IEEE Trans Fuzzy Syst, 2010, 18: 845–861

    Article  Google Scholar 

  28. Lin W, Qian C J, Huang X Q. Disturbance attenuation of a class of non-linear systems via output feedback. Int J Robust Nonlinear Control, 2003 13: 1359–1369

    Article  MATH  MathSciNet  Google Scholar 

  29. Gavel D T, Silijak D D. Decentralized adaptive control: structural conditions for stability. IEEE Trans Autom Control, 1989, 34: 413–426

    Article  MATH  Google Scholar 

  30. Esfandiari F, Khalil H K. Output feedback stabilization of fully linearizable systems. Int J Control, 1992, 56: 1007–1037

    Article  MATH  MathSciNet  Google Scholar 

  31. Ioannou P A. Decentralized adaptive control of interconnected systems. IEEE Trans Autom Control, 1986, 31: 291–298

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShaoCheng Tong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, S., Ren, C. & Li, Y. Adaptive fuzzy decentralized control for nonlinear large-scale systems based on high-gain observer. Sci. China Inf. Sci. 55, 228–242 (2012). https://doi.org/10.1007/s11432-011-4404-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4404-7

Keywords

Navigation