Skip to main content
Log in

Unsupervised robust recursive least-squares algorithm for impulsive noise filtering

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A robust recursive least-squares (RLS) adaptive filter against impulsive noise is proposed for the situation of an unknown desired signal. By minimizing a saturable nonlinear constrained unsupervised cost function instead of the conventional least-squares function, a possible impulse-corrupted signal is prevented from entering the filter’s weight updating scheme. Moreover, a multi-step adaptive filter is devised to reconstruct the observed “impulse-free” noisy sequence, and whenever impulsive noise is detected, the impulse contaminated samples are replaced by predictive values. Based on simulation and experimental results, the proposed unsupervised robust recursive least-square adaptive filter performs as well as conventional RLS filters in “impulse-free” circumstances, and is effective in restricting large disturbances such as impulsive noise when the RLS and the more recent unsupervised adaptive filter fails.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Haykin S. Adaptive Filter Theory. 4th ed. New Jersey: Prentice Hall, 2002

    Google Scholar 

  2. Sun J, Chen J, Liu G P, et al. Delay-dependent robust H∞ filter design for uncertain linear systems with time-varying delay. Circ Syst Signal Pr, 2009, 28: 763–779

    Article  MathSciNet  MATH  Google Scholar 

  3. Shi P, Mahmoud M, Nguang S K, et al. Robust filtering for jumping systems with mode-dependent delays. Signal Process, 2006, 86: 140–152

    Article  MATH  Google Scholar 

  4. Chan S C, Zou Y. A recursive least M-estimate algorithm for robust adaptive filtering in impulsive noise: fast algorithm and convergence performance analysis. IEEE Trans Signal Proces, 2004, 52: 975–991

    Article  MathSciNet  Google Scholar 

  5. Xia T, Wan Q, Wang X, et al. 2-D DOAs estimation in impulsive noise environments using joint diagonalization fractional lower-order spatio-temporal matrices. Sci China Ser F-Inf Sci, 2008, 51: 1585–1593

    Article  MathSciNet  MATH  Google Scholar 

  6. Weng B, Kenneth E B. Nonlinear system identification in impulsive environments. IEEE Trans Signal Proces, 2005, 53: 2588–2594

    Article  Google Scholar 

  7. Seong R K, Efron A. Adaptive robust impulse noise filtering. IEEE Trans Signal Proces, 1995, 43: 1855–1866

    Article  Google Scholar 

  8. Jayant N. Average- and median-based smoothing techniques for improving digital speech quality in the presence of transmission errors. IEEE Trans Commun, 1976, 24: 1043–1045

    Article  Google Scholar 

  9. Zou Y, Chan S C, Ng T S. A recursive least M-estimate (RLM) adaptive filter for robust filtering in impulsive noise. IEEE Signal Proc Let, 2000, 7: 324–326

    Article  Google Scholar 

  10. Zou Y, Chan S C, Ng T S. Least mean M-estimate algorithms for robust adaptive filtering in impulse noise. IEEE Trans Circuits II, 2000, 47: 1564–1569

    Google Scholar 

  11. Vega L R, Rey H, Benesty J, et al. A new robust variable step-size NLMS algorithm. IEEE Trans Signal Proces, 2008, 56: 1878–1893

    Article  Google Scholar 

  12. Vega L R, Rey H, Benesty J, et al. A family of robust algorithms exploiting sparsity in adaptive filters. IEEE Trans Audi Speech Lang Pr, 2009, 17: 572–581

    Article  Google Scholar 

  13. Vega L R, Rey H, Benesty J, et al. A fast robust recursive least-squares algorithm. IEEE Trans Signal Proces, 2009, 57: 1209–1216

    Article  Google Scholar 

  14. Awate S P, Whitaker R T. Unsupervised, information-theoretic, adaptive image filtering for image restoration. IEEE Trans Pattern Anal, 2006, 28: 364–376

    Article  Google Scholar 

  15. Makov U. Approximations to unsupervised filters. IEEE Trans Automat Contr, 1980, 25: 842–847

    Article  MATH  Google Scholar 

  16. Zeitler G C, Singer A C. Universal linear least-squares prediction in the presence of noise. In: Proceedings of IEEE/SP 14th Workshop on Statistic Signal Process. New York: IEEE Press, 2007. 611–614

    Google Scholar 

  17. Zinkevich M. Online convex programming and generalized infinitesimal gradient ascent. In: Lane T, ed. Proceedings of the 20th International Conference on Machine Learning. Menlo Park: AAAI Press, 2003. 928–936

    Google Scholar 

  18. Moon T, Weissman T. Universal FIR MMSE filtering. IEEE Trans Signal Proces, 2009, 57: 1068–1083

    Article  Google Scholar 

  19. Weissman T, Ordentlich E, Weinberger M J, et al. Universal filtering via prediction. IEEE Trans Inform Theory, 2007, 53: 1253–1264

    Article  MathSciNet  MATH  Google Scholar 

  20. Rousseeuw P J, Leroy A M. Robust Regression and Outlier Detection. New York: Wiley, 1987

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Ma, T., Chen, W. et al. Unsupervised robust recursive least-squares algorithm for impulsive noise filtering. Sci. China Inf. Sci. 56, 1–10 (2013). https://doi.org/10.1007/s11432-011-4458-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4458-6

Keywords

Navigation