Skip to main content
Log in

P2P traffic optimization

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Peer-to-peer (P2P) based content distribution systems have emerged as the main form for content distribution on the Internet, which can greatly reduce the distribution cost of content providers and improve the overall system scalability. However, the mismatch between the overlay and underlay networks causes large volume of redundant traffic, which intensifies the tension between P2P content providers and ISPs. Therefore, how to efficiently use network resources to reduce the traffic burden on the ISPs is crucial for the sustainable development of P2P systems. This paper surveys the state-of-art P2P traffic optimization technologies from three perspectives: P2P cache, locality-awareness and data scheduling. Technological details, comparison between these technologies and their applicabilities are presented, followed by a discussion of the issues that remain to be addressed and the direction of future content distribution research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karagiannis T, Broido A, Brownlee N, et al. Is P2P dying or just hiding? In: Proc IEEE Global Telecommunications Conf (GLOBECOM’04), Dallas, TX, 2004. 1532–1538

  2. Ledlie J, Gardner P, Seltzer M. Network coordinates in the wide. In: Proceedings of NSDI 2007, Cambridge, MA, USA, 2007

  3. Gurbani V K, Hilt V, Rimac I, et al. A survey of research on the application-layer traffic optimization problem and the need for layer corporation. IEEE Commun Mag, 2009, 47: 107–112

    Article  Google Scholar 

  4. Aggarwal V, Feldmann A, Scheideler C. Can ISPs and P2P users cooperate for improved performance? ACM SIGCOMM Comput Commun Rev, 2007, 37: 31–40

    Article  Google Scholar 

  5. Xie H Y, Yang Y R, Krishnamurthy A, et al. P4P: Provider portal for applications. In: Proc ACM SIGCOMM 2008, Seattle, WA, USA, 2008

  6. Sen S, Wang J. Analyzing peer-to-peer traffic across large networks. IEEE/ACM Trans Netw, 2004, 12: 219–232

    Article  Google Scholar 

  7. Stoica I, Morris R, Karger D, et al. Chord: A scalable peer-to-peer lookup service for Internet Applications. In: Proc ACM SIGCOMM’01, San Diego, CA, USA, 2001

  8. Rowstron A, Druschel P. Pastry: scalable, decentralized object location and routing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference on Distributed Systems Platforms, Heidelberg, Germany, 2001

  9. Gummadi K, Saroiu S, Gribble S, et al. Measurement, modeling, and analysis of a peer-to-peer file-sharing workload. In: Proc 19th ACM Symp Operating Systems Principles (SOSP’03), Bolton Landing, NY, 2003. 314–329

  10. Leibowitz N, Bergman A, Ben-shaul R, et al. Are file swapping networks cacheable? Characterizing P2P traffic. In: Proc 7th Intl Workshop on Web Content Caching and Distribution (WCW’02), Boulder, CO, 2002

  11. Wierzbicki A, Leibowitz N, Ripeanu M, et al. Cache replacement policies revisited: the case of P2P traffic. In: Proc 4th Intl Workshop on Global and Peer-to-Peer Computing (GP2P’04), Chicago, IL, 2004. 182–189

  12. Hefeeda M, Saleh O. Traffic modeling and proportional partial caching for peer-to-peer systems. IEEE/ACM Trans Netw, 2008, 16: 1447–1460

    Article  Google Scholar 

  13. Breslau L, Cao P, Fan L, et al. Web caching and Zipf-like distributions: evidence and implications. In: Proc IEEE INFOCOM, New York, NY, USA, 1999

  14. Cherkasova L. Improving www proxies performance with greedy-dualSize frequency caching policy. HP Laboratories Report No. HPL-98-69R1, April, 1998

  15. DECADE working group, https://datatracker.ietf.org/wg/decade, 2010

  16. Song H, Zong N, Yang Y, et al. Decoupled application data ENROUTE (DECADE) problem statement. draft-ietfdecade-problem-statement-00.txt, Aug, 2010

  17. Zhou R. P2P traffic optimization based P2P cache (in Chinese). Telecommun Netw Tech, 2009, 1: 11–15

    Google Scholar 

  18. Karagiannis T, Rodriguez P, Papagiannaki K. Should internet service providers fear peer-assisted content distribution? In: Proc 5th ACM SIGCOMM Conf Internet Measurement (IMC’05), Berkeley, CA, 2005. 63–76

  19. Rasti A, Stutzbach D, Rejaie R. On the long-term evolution of the two-tier Guntella overlay. In: Global Internet, Barcelona, Spain, 2006

  20. Ripeanu M, Foster L, Iamnitchi A. Mapping the Gnutella network: Properties of large-scale peer-to-peer systems and implications for system design. IEEE Internet Comput J (Special Issue on Peer-to-Peer Networking), 2002, 6: 50–57

    Google Scholar 

  21. Ren S, Tan E, Luo T, et al. TopBT: A topology-aware and infrastructure-independent BitTorrent client. In: Proc IEEE INFOCOM, San Diego CA, USA, 2010

  22. Liu Y H, Xiao L, Liu X M, et al. Location awareness in unstructured peer-to-peer systems. IEEE Trans Parall Distr Syst, 2005, 6: 163–174

    Google Scholar 

  23. Zhang X Y, Zhang Q, Zhang Z S, et al. A construction of locality-aware overlay networks: mOverlay and its performance. IEEE J Select Areas Commun, 2004, 22: 18–28

    Article  MATH  Google Scholar 

  24. Francis P, Jamin S, Jin C, et al. IDMaps: A global internet host distance estimation service. IEEE/ACM Trans Netw, 2001, 9: 525–540

    Article  Google Scholar 

  25. Ratnasamy S, Handley M, Karp R, et al. Topologically aware overlay construction and server selection. In: Proc IEEE INFOCOM, New York, NY, USA, 2002

  26. Gummadi K P, Saroiu S, Gribble S D. King: Estimating latency between arbitrary internet end hosts. In: Proc Internet Measurement Conference (IMC), Marseille, France, 2002

  27. Leonard D, Loguinov D. Turbo king: Framework for large-scale internet delay measurements. In: Proc IEEE INFOCOM’ 08, Phoenix, AZ, USA, 2008

  28. Su A J, Choffnes D, Bustamante F E, et al. Relative network positioning via CDN redirections. In: Proc IEEE ICDCS’08, Beijing, China, 2008

  29. Choffnes D R, Bustamante F E. Taming the torrent: A practical approach to reducing cross-ISP traffic in peer-to-peer systems. In: Proc ACM SIGCOMM, Seattle, WA, USA, 2008

  30. Wang Y J, Li X Y. Network distance predication technology research (in Chinese with English Abstract). J Software, 2009, 20: 1574–1590

    Article  Google Scholar 

  31. Xing C Y, Chen M. Techniques for network distance predication (in Chinese with English abstract). J Software, 2009, 20: 2470–2482

    Article  Google Scholar 

  32. Ng E, Zhang H. A network positioning system for the Internet. In: USENIX Conference, Boston, MA, 2004

  33. Lim H, Hou J C, Choi C H. Constructing internet coordinate system based on delay measurement. IEEE/ACM Trans Netw, 2005, 13: 513–525

    Article  Google Scholar 

  34. Tang L, Crovella M. Virtual landmarks for the Internet. In: Internet Measurement Conference, Miami, Florida, USA, 2003

  35. Agarwal S, Lorch J R. Matchmaking for online games and other latency-sensitive P2P systems. In: Proc ACM SIGCOMM, Barcelona, Spain, 2009

  36. Eriksson B, Barford P, Nowak R. Estimating hop distance between arbitrary host pairs. In: Proc IEEE INFOCOM, Rio de Janeiro, Brazil, 2009

  37. Pias M, Crowcroft J, Wilbur S, et al. Lighthouses for scalable distributed location. In: IPTPS’03, Berkeley, CA, USA, 2003

  38. Costa M, Castro M, Rowstron A, et al. PIC: Practical internet coordinates for distance estimation. In: Conf Distributed Systems, Tokyo, Japan, 2004

  39. Mao Y, Saul L K, Smith J M. IDES: An internet distance estimation service for large networks. IEEE J Select Areas Commun, 2006, 24: 2273–2284

    Article  Google Scholar 

  40. Dabek F, Cox R, Kaashoek F, et al. Vivaldi: A decentralized network coordinate system. In: Proc ACM SIGCOMM, Portland, OR, 2004

  41. Shavitt Y, Tankel T. Big-bang simulation for embedding network distances in Euclidean space. IEEE/ACM Trans Netw, 2004, 12: 993–1006

    Article  Google Scholar 

  42. Lehman L, Lerman S. PCoord: Network position estimation using peer-to-peer Measurements. In: Proc of the 3rd IEEE International Symposium on Network Computing and Applications, Cambridge, MA, USA, 2004

  43. Krishnamurthy B, Wang J. On network-aware clustering of web clients. In: Proc ACM SIGCOMM’00, Stockholm, Sweden, 2000

  44. Routeviews project. http://www.routeviews.org

  45. RIPE project. http://www.ripe.net/np/ris/

  46. Cramer C, Kutzner K, Fuhrmann T. Bootstrapping locality-aware P2P networks. In: Proc 12th Intl Conf Networks (ICON’04), Singapore, 2004. 1: 357–361

  47. Saucez D, Donnet B, Bonaventure O. Implementation and preliminary evaluation of an ISP-driven informed path selection. In: Proc ACM CoNEXT, New York, NY, USA, 2007

  48. YD/T 2146-2010. Technical framework for carrier network-aware P2P traffic optimization

  49. Seedorf J, Burger E. Application-layer traffic optimization (ALTO) problem statement. RFC 5693, IETF, Oct, 2009

  50. Alimi R, Penno R, Yang Y. ALTO protocol. draft-ietf-alto-protocol-06.txt, Oct, 2010

  51. Bindal R, Cao P, Chan W, et al. Improving traffic locality in BitTorrent via Biased neighbor selection. In: Proc IEEE ICDCS, Lisboa, Portugal, 2006

  52. Horovitz S, Dolev D. LiteLoad: Content unaware routing for localizing P2P protocols. In: IPDPS, Shanghai, China, 2008

  53. Ahlswede R, Cai N, Li S R, et al. Network information flow. IEEE Trans Inf Theory, 2000, 46: 1204–1216

    Article  MathSciNet  MATH  Google Scholar 

  54. Li S R, Yeung R W, Cai N. Linear network coding. IEEE Trans Inf Theory, 2003, 49: 371–381

    Article  MathSciNet  MATH  Google Scholar 

  55. Koetter R, Medard M. An algebraic approach to network coding. IEEE/ACM Trans Netw, 2003, 11: 782–795

    Article  Google Scholar 

  56. Ho T, Koetter R, Medard M, et al. The benefits of coding over routing in a randomized setting. In: Proc of International Symposium on Information Theory, Yokohama, Japan, 2003

  57. Gkanisidis C, Rodnguez P R. Network coding for large scale content distribution. In: Proc IEEE INFOCOM, Miami, FL, USA, 2005

  58. Wang M, Li B. Lava: A reality check of network coding in peer-to-peer live streaming. In: Proc IEEE INFOCOM, Anchorage, Alaska, USA, 2007

  59. Lei Y C, Cheng S, Wu C L, et al. P2P content distribution with network coding (in Chinese with English abstract). J Comput R&D, 2009, 46: 108–119

    Google Scholar 

  60. Tomozei D C, Massoulié L. Flow control for cost-efficient peer-to-peer streaming. In: Proc IEEE INFOCOM, San Diego, CA, USA, 2010

  61. Zhang G Q, Zhang G Q, Cheng S Q. LANC: locality-aware network coding for better P2P traffic localization. Comput Netw, 2011, 55: 1242–1256

    Article  MathSciNet  Google Scholar 

  62. Tang M D, Zhang G Q, Yang J, et al. A survey of P2P traffic optimization technologies (in Chinese). Telecommun Network Tech, 2009, 1: 1–7

    Google Scholar 

  63. Koponen T, Chawla M, Chun B G, et al. A data-oriented (and beyond) network architecture. In: Proc ACM SIGCOMM, Kyoto, Japan, 2007

  64. Jacobson V, Smetters D K, Thornton J D, et al. Networking named content. In: Proc CoNEXT’09, Rome, Italy, 2009

  65. Paul S, Pan J, Jain R. Architecture for the future networks and the next generation Internet: A survey. Comput Commun, 2011, 34: 2–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoQiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Tang, M., Cheng, S. et al. P2P traffic optimization. Sci. China Inf. Sci. 55, 1475–1492 (2012). https://doi.org/10.1007/s11432-011-4464-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4464-8

Keywords

Navigation