Skip to main content
Log in

A 630dpi dynamic LED display array in standard Si-based CMOS technology

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A novel silicon light emitting diode (LED) display array has been fabricated using 0.35 μm standard CMOS technology. In this array, an LED and static random access memory (SRAM) are integrated together in a special layout. The SRAM in each pixel can store the state of the pixel and ensure that the pixel remains lit without persistent flashing. As a result, the control logic is perfectly integrated on the same wafer. Two power sources are used to drive the display array because the LEDs operate at high voltage (supply voltage of 9 V), and the current of the whole display array is about 30–60 mA to display common characters. The display circuit includes digital control logic circuits and SRAM, and requires a supply voltage of 3.3 V. The area of a single pixel is 40×40 μm2, the area of the whole 16×16 LED array is 1 mm2, and the display density is 630 dpi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newman R. Visible light from a Silicon p-n Junction. Phys Rev, 1955, 100: 700–703

    Article  Google Scholar 

  2. Rong H, Liu A, Jones R, et al. An all silicon Raman laser. Nature, 2005, 433: 292–294

    Article  Google Scholar 

  3. Canham L T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 1990, 57: 1046–1048

    Article  Google Scholar 

  4. Kanemitsu Y, Suzuki K, Kyushin S, et al. Visible photoluminescence from silicon-backbone polymers. Phys Rev, 1995, B51: 13103–13110

    Article  Google Scholar 

  5. Lu Z H, Lockwood D J, Baribeau J M. Visible light emitting Si/SiO2 superlattices. Solid-Store Electron, 1996, 40: 197–201

    Article  Google Scholar 

  6. Pavesi L, Dal N L, Mazzoleni C, et al. Optical gain in silicon nanocrystals. Nature, 2000, 408: 440–444

    Article  Google Scholar 

  7. Kompocholis C, Pucker G, Bellutti P, et al. A characterization of injection, transport an excitation mechanisms in Si-nc based MOS-LEDs. In: 3rd IEEE International Conference on Group IV Photonics 2006. Ottawa, 2006. 13–15

  8. Komoda T, Kelly J, Cristiano F, et al. Visible photoluminescence at room temperature from icrocrystalline silicon precipitates in SiO2 formed by ion implantation. Nucl Instrum Meth, 1995 B96: 387–391

    Article  Google Scholar 

  9. Franzò G, Priolo F, Coffa S, et al. Room-temperature electroluminescence from Er-doped crystalline Si. Appl Phys Lett, 1994, 64: 2235–2237

    Article  Google Scholar 

  10. Michel J, Zheng B, Palm J, et al. Erbium doped Si. for light emitting devices. In: Proceedings of the MRS Spring Meeting. San Francisco: MRS, 1996. 317–324

    Google Scholar 

  11. Presting H, Kibbel H, Jaros M, et al. Ultrathin SimGen strained layer superlattices-a step towards Si optoelectronics. Semicond Sci Technol, 1992, 7: 1127–1148

    Article  Google Scholar 

  12. Green M A, Zhao J, Wang A, et al. Efficient silicon light-emitting diodes. Nature, 2001, 412: 805–808

    Article  Google Scholar 

  13. Leong D, Harry M, Resson K J. A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm. Nature, 1997, 387: 686–688

    Article  Google Scholar 

  14. Ng W L, Lourenco M A, Homewood K P, et al. An efficient room-temperature silicon-based light emitting diode. Nature, 2001, 410: 192–194

    Article  Google Scholar 

  15. Mathine D L, Woo H S, He W, et al. Organic LEDs heterogeneously integrated with CMOS circuitry. In: Lasers and Electro-Optics Society 1999 12th Annual Meeting. San Francisco: IEEE, 1999. 216–217

    Google Scholar 

  16. Castagna M E, Coffa S, Caristia L, et al. Quantum dot materials and devices for light emission in silicon. In: Proceeding of the 32nd European Solid-State Device Research Conference. Firenze: ESSDERC, 2002. 439–442

    Google Scholar 

  17. Castagna M E, Coffa S, Monaco M, et al. High efficiency light emitting devices in silicon. Mat Sci Eng B, 2003, 1051–3: 83–90

    Article  Google Scholar 

  18. LeMinh P, Holleman J, Berenschot J, et al. Monolithic integration of a novel microfluidic device with silicon light emitting diodeantifuse and photodetector. In: Proceeding of the 32nd European Solid-State Device Research Conference. Firenze: ESSDERC, 2002. 451–454

    Google Scholar 

  19. Wada K. Challenges of Si photonics for on-chip integration. In: 35th European Conference on Optical Communication. Vienna: ECOC, 2009. 1–3

    Google Scholar 

  20. Snyman L W, Aharoni H, Plessis M, et al. Increased efficiency of silicon light emitting diodes in a standard 1.2 micron complementary metal oxide semiconductor technology. Opt Eng, 1998, 37: 2133–2141

    Article  Google Scholar 

  21. Snyman L W, Aharoni H, Plessis M. A dependency of quantum efficiency of silicon CMOS n+pp+ LEDs on current density. IEEE Photonic Tech L, 2005 17: 2041–2043

    Article  Google Scholar 

  22. Aaroni H, Plessis M. Low operating voltage integrated silicon light emitting devices. IEEE J Quantum Elect, 2004, 40: 557–563

    Article  Google Scholar 

  23. Snyman L W, Plessis M, Aharoni H. Injection-avalanche-based n+pn silicon complementary metal-oxide-semiconductor light-emitting device (450–750 nm) with 2-order-of-magnitude increase in light emission intensity. Jpn J Appl Phys, 2007, 46: 2474–2480

    Article  Google Scholar 

  24. Snyman L W, Ogudo K A, Plessis M, et al. Application of Si LED’s (450 nm–750 nm) in CMOS integrated circuitry based MOEMS—simulation and analyses. P SPIE, 2009, 7208: 72080C

    Article  Google Scholar 

  25. Chen H D, Liu H J, Liu J B, et al. Silicon light emitting devices in CMOS technology. Chinese Phys Lett, 2007, 24: 265

    Article  MATH  Google Scholar 

  26. Huang B, Zhang X, Dong Z, et al. Monolithic integration of light emitting diodes, photodetector and receiver circuit in standard CMOS technology. In: 9th International Conference on Solid-State and Integrated-Circuit Technology. Beijing: IEEE, 2008. 985–987

    Chapter  Google Scholar 

  27. Yang J Y, Taddiken A, Kao Y C. Monolithic integration of GaAs LED array/Si CMOS logic. In: 13th Annual Gallium Arsenide Integrated Circuit (GaAs IC) Symposium. Monterey: Technical Digest, 1991. 301–304

    Google Scholar 

  28. Bockstaele R, Coosemans T, Sys C, et al. Realization and characterization of 8×8 resonant cavity LED arrays mounted onto CMOS drivers for POF-based interchip interconnections. IEEE J Sele Top Quant, 1999, 52: 224–235

    Article  Google Scholar 

  29. Griffin C, McKendry J, Zhang H X, et al. CMOS-integrated flip-chip, micro-pixel InGaN LED arrays for on-chip microfluorimetry. In: The 20th Annual Meeting of the IEEE, Lasers and Electro-Optics Society. Lake Buena Vista: IEEE, 2007. 588–589

    Google Scholar 

  30. McKendry J, Rae B R, Zheng G, et al. Individually addressable AlInGaN micro-LED arrays with CMOS control and subnanosecond output pulses. IEEE Photonic Tech L, 2009, 2112: 811–813

    Article  Google Scholar 

  31. Ogihara M, Sagimori T, Mutoh M, et al. 1200dpi thin film LED array by silicon photonics technology. In: 58th Electronic Components and Technology Conference. Lake Buena Vista: IEEE 2008. 762–772

    Google Scholar 

  32. Chen H, Liu H, Liu J, et al. Silicon light emitting devices in CMOS technology. Chinese Phys Lett, 2007, 24: 265–267

    Article  MATH  Google Scholar 

  33. Bude J, Sano N, Yoshii A. Hot carrier luminescence in silicon. Phys Rev B, 1992, 45: 5848–5856

    Article  Google Scholar 

  34. Kramer J, Seltz P, Stelgmeler E F, et al. Light-emitting devices in industrial CMOS technology. Sensor Actuat A, 1993, 37–38: 521–533

    Google Scholar 

  35. Liu C W, Chang S T, Liu W T, et al. Hot carrier recombination model of visible electrolumine -scence from metal-oxide-silicon tunneling diodes. Appl Phys Lett, 2000, 77: 4347–4349

    Article  Google Scholar 

  36. Green M A, Zhao J, Wang A, et al. High-efficiency silicon light emitting diodes. Physica E, 2003, 163: 351–358

    Article  Google Scholar 

  37. Akil N, Kerns S E Kerns D V, et al. A multimechanism model for photon generation by silicon junctions in avalanche breakdown. IEEE Trans Electron Dev, 1999, 46: 1022–1028

    Article  Google Scholar 

  38. Chatterjee A, Bhuva B, Schrimpf R. High-speed light modulation in avalanche breakdown mode for Si diodes. IEEE Electr Device L, 2004, 25: 628–630

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zan Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Z., Wang, W., Huang, B. et al. A 630dpi dynamic LED display array in standard Si-based CMOS technology. Sci. China Inf. Sci. 55, 2409–2416 (2012). https://doi.org/10.1007/s11432-011-4498-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-011-4498-y

Keywords

Navigation