Skip to main content
Log in

Stability for a class of nonlinear time-delay systems via Hamiltonian functional method

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the stability of a class of nonlinear time-delay systems via Hamiltonian functional method, and proposes a number of new results on generalized Hamiltonian realization (GHR) and stability analysis for this class of systems. Firstly, the concept of GHR of general nonlinear time-delay systems is proposed, and several new GHR methods are given. Then, based on the new GHR methods obtained, the stability of time-delay systems is investigated, and several delay-dependent sufficient conditions in term of matrix inequalities are derived for the stability analysis by constructing suitable Lyapunov-Krasovskii (L-K) functionals. Finally, an illustrative example shows that the results obtained in this paper have less conservatism, and work very well in the stability analysis of some nonlinear time-delay Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu K, Kharitonov V L, Chen J. Stability of Time-Delay Systems. Berlin: Springer, 2003. 322–323

    Book  MATH  Google Scholar 

  2. Richard J P. Time-delay systems: an overview of some recent advances and open problems. Autom, 2003, 39: 1667–1694

    Article  MathSciNet  MATH  Google Scholar 

  3. Bagchi A. A martingale approach to state estimation in delay-differential systems. J Math Anal Appl, 1976, 56: 195–210

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd S, Ghaoui L E, Feron E, et al. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994. 23–24

    Book  MATH  Google Scholar 

  5. Briggs M, Vinter R. Linear filtering for time-delay systems. IMA J Math Contr Inf, 1989, 6: 167–178

    Article  MathSciNet  MATH  Google Scholar 

  6. Han Q. On stability of linear neutral systems with mixed time delays: A discretized Lyapunov functional approach. Autom, 2005, 41: 1209–1218

    Article  MATH  Google Scholar 

  7. He Y, Wu M, She J, et al. Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties. IEEE Trans Autom Contr, 2004, 49: 828–832

    Article  MathSciNet  Google Scholar 

  8. Jiang Z, Gui W, Xie Y, et al. Delay-dependent stabilization of singular linear time delay systems based on memory state feedback control. In: Proceedings of the 27th Chinese Control Conference, Kunming, 2008. 767–771

  9. Kharitonov V, Mondié S, Collado J. Exponential estimates for neutral time-delay systems: an LMI approach. IEEE Trans Autom Contr, 2005, 50: 666–670

    Article  Google Scholar 

  10. Park P. A delay-dependent stability criterion for system with uncertain time-invairiant delay. IEEE Trans Autom Contr, 1999, 44: 876–877

    Article  MATH  Google Scholar 

  11. Wu M, Liu F, Shi P, et al. Exponential stability analysis for neural networks with time-varying delay. IEEE Trans Syst, Man Cybernetics, 2008, 38: 1152–1156

    Article  Google Scholar 

  12. Xu S, Lam J. Improved delay-dependent stability criteria for time-delay systems. IEEE Trans Autom Contr, 2005, 50: 384–387

    Article  MathSciNet  Google Scholar 

  13. Cao Y, Frank P M. Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models. Fuzzy Sets Syst, 2001, 124: 213–229

    Article  MathSciNet  MATH  Google Scholar 

  14. Coutinho D F, De Souza C E. Delay-dependent robust stability and L2-gain analysis of a class of nonlinear time-delay systems. Autom, 2008, 44: 2006–2018

    Article  Google Scholar 

  15. Fridman E, Dambrine M, Yeganefar N. On input-to-state stability of systems with time-delay: A matrix inequalities approach. Autom, 2008, 44: 2364–2369

    Article  MathSciNet  MATH  Google Scholar 

  16. Nguang S K. Robust stabilization of a class of time-delay nonlinear systems. IEEE Trans Autom Contr, 2000, 45: 756–762

    Article  MathSciNet  MATH  Google Scholar 

  17. Papachristodoulou A. Analysis of nonlinear time-delay systems using the sum of squares decomposition. In: American Control Conference, Boston, 2004. 4153–4158

  18. Gong Q, Zhang H, Song C, et al. Disturbance decoupling control for a class of nonlinear time-delay systems. In: Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, 2006. 878–882

  19. Jiao X, Shen T. Adaptive feedback control of nonlinear time-delay systems: the Lasalle-Razumikhin-based approach. IEEE Trans Autom Contr, 2005, 50: 1909–1913

    Article  MathSciNet  Google Scholar 

  20. Mazenc F, Bliman P. Backstepping design for time-delay nonlinear systems. IEEE Trans Autom Contr, 2006, 51: 149–154

    Article  MathSciNet  Google Scholar 

  21. Wu W. Robust linearizing controllers for nonlinear time-delay systems. IEEE Proc Control Theory Appl, 1999, 146: 91–97

    Article  Google Scholar 

  22. Zemouche A, Boutayeb M, Bara G I. On observers design for nonlinear time-delay systems. In: Proceedings of the 2006 American Contral Conference, Minnesota, 2006. 14–16

  23. Melchor-Aguilar D, Niculescu S I. Estimates of the attraction region for a class of nonlinear time delay systems. IMA J Math Contr Inf, 2007, 24: 523–550

    Article  MathSciNet  MATH  Google Scholar 

  24. Maschke B M, Van Der Schaft A J. Port-controlled Hamiltonian systems: Modelling origins and system theoretic properties. In: Proceedings of the 2nd IFAC symposium on Nonlinear Control Systems Design, Bordeaux, 1992. 282–288

  25. Van Der Schaft A J, Maschke B M. The Hamiltonian formulation of energy conserving physical systems with external ports. Archive für Elektronik und Übertragungstechnik, 1995, 49: 362–371

    Google Scholar 

  26. Escobar G, Vander Schaft A J, Ortega R. A Hamiltonian viewpoint in the modeling of switching power converters. Autom, 1999, 35: 445–452

    Article  MATH  Google Scholar 

  27. Ortega R, Van Der Schaft A J, Maschke B M, et al. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Autom, 2002, 38: 585–596

    Article  MATH  Google Scholar 

  28. Wang Y, Li C, Cheng D. Generalized Hamiltonian realization of time-invariant nonlinear systems. Autom, 2003, 39: 1437–1443

    Article  MathSciNet  MATH  Google Scholar 

  29. Cheng D, Xi Z. Energy-based stabilization of forced Hamiltonian systems with its application to power systems. In: Proceedings of the 14th IFAC World Congress, Beijing, 1999. 297–303

  30. Xi Z, Cheng D. Nonlinear decentralized controller design for multi-machine power systems using Hamiltonian function method. Autom, 2002, 38: 527–534

    Article  MATH  Google Scholar 

  31. Wang Y, Feng G, Cheng D, et al. Adaptive L 2 disturbance attenuation control of multi-machine power systems with SMES units. Autom, 2006, 42: 1121–1132

    Article  MathSciNet  MATH  Google Scholar 

  32. Pasumarthy R, Kao C Y. On stability of time-delay Hamiltonian systems analysis. In: American Control Conference, Hyatt Regen, 2009. 4909–4914

  33. Sun W, Wang Y. Stability analysis for some class of time-delay nonlinear Hamiltonian systems. J Shandong University (Nat Sci), 2007, 42: 1–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to RenMing Yang or YuZhen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, R., Wang, Y. Stability for a class of nonlinear time-delay systems via Hamiltonian functional method. Sci. China Inf. Sci. 55, 1218–1228 (2012). https://doi.org/10.1007/s11432-012-4573-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4573-z

Keywords

Navigation