Skip to main content
Log in

Construction of minimal trellises for quantum stabilizer codes

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The size of vertex set of quantum trellises affects the efficiency of decoding algorithms, which can be improved by reducing the number of vertices. Based on the standard check matrix of stabilizer codes, an algorithm to construct trellis-oriented generators for quantum stabilizer codes is presented. By using this algorithm, the trellises with minimal vertex set can be constructed. In addition, an algorithm to construct trellises iteratively for quantum stabilizer codes is also introduced. The algorithm proposed in this paper is more efficient and less complex than the one proposed by Olliver, and so is more suitable for the applications of larger scale and stricter timeliness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000. 72–145

    MATH  Google Scholar 

  2. Poulin D, Tillich J P. Quantum serial turbo codes. IEEE Trans Inform Theory, 2009, 55: 2776–1798

    Article  MathSciNet  Google Scholar 

  3. Ollivier H, Tillich J P. Trellises for stabilizer codes: definition and uses. Phys Rev A, 2006, 74: 032304

    Article  Google Scholar 

  4. Calderbank A R, Rains E M, Shor P W, et al. Quantum error correction via codes over GF(4). IEEE Trans Inform Theory, 1998, 44: 1369–1387

    Article  MathSciNet  MATH  Google Scholar 

  5. Ketkar A, Klappenecker A, Kumar S, et al. Nonbinary stabilizer codes over finite fields. IEEE Trans Inform Theory, 2006, 52: 4892–4914

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhong S Q, Ma Z, Xu Y J. Constructing quantum error correcting code via logic function. Sci China Inf Sci, 2010, 53: 515–523

    Article  MathSciNet  Google Scholar 

  7. Aggarwal V, Calderbank A R. Boolean function, projection operators, and quantum error correcting codes. IEEE Trans Inform Theory, 2008, 54: 1700–1707

    Article  MathSciNet  MATH  Google Scholar 

  8. Cross A, Smith G, Wehner S, et al. Codeword stabilized quantum codes. IEEE Trans Inform Theory, 2009, 55: 433–438

    Article  MathSciNet  Google Scholar 

  9. Rahn B, Doherty A C, Mabuchi H. Exact performance of concatenated quantum codes. Phys Rev A, 2002, 66: 032304

    Article  Google Scholar 

  10. Hsieh M H, Gall F L. NP-hardness of decoding quantum error correction codes. arXiv: quant-ph/10091319

  11. Shao J H, Bai B M, Lin W, et al. Jointly-check iterative decoding algorithm for quantum sparse graph codes. Chin Phys B, 2010, 19: 080307

    Article  Google Scholar 

  12. Gottesman D. Stabilizer codes and quantum error correction. Pasadena: California Institute of Technology, 1997. 17–36

    Google Scholar 

  13. Gottesman D. Class of quantum error-correcting codes saturating the quantum Hamming bound. Phys Rev A, 1996, 54: 1862–1868

    Article  MathSciNet  Google Scholar 

  14. Ho K H, Chau H F. Purifying Greenberger-Horne-Zeilinger states using degenerate quantum codes. Phys Rev A, 2008, 78: 042329

    Article  Google Scholar 

  15. Sarvepalli P, Klappenecker A. Degenerate quantum codes and the quantum Hamming bound. Phys Rev A, 2010, 81: 032318

    Article  Google Scholar 

  16. Xiao F Y, Chen H W. Error correction and decoding for quantum stabilizer codes (in Chinese). Acta Phys Sin, 2011, 60: 080303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HanWu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, F., Chen, H. Construction of minimal trellises for quantum stabilizer codes. Sci. China Inf. Sci. 56, 1–11 (2013). https://doi.org/10.1007/s11432-012-4595-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4595-6

Keywords

Navigation