Skip to main content
Log in

Sparse microwave imaging: Principles and applications

  • Review
  • Special Issue
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper provides principles and applications of the sparse microwave imaging theory and technology. Synthetic aperture radar (SAR) is an important method of modern remote sensing. During decades microwave imaging technology has achieved remarkable progress in the system performance of microwave imaging technology, and at the same time encountered increasing complexity in system implementation. The sparse microwave imaging introduces the sparse signal processing theory to radar imaging to obtain new theory, new system and new methodology of microwave imaging. Based on classical SAR imaging model and fundamental theories of sparse signal processing, we can derive the model of sparse microwave imaging, which is a sparse measurement and recovery problem and can be solved with various algorithms. There exist several fundamental points that must be considered in the efforts of applying sparse signal processing to radar imaging, including sparse representation, measurement matrix construction, unambiguity reconstruction and performance evaluation. Based on these considerations, the sparse signal processing could be successfully applied to radar imaging, and achieve benefits in several aspects, including improvement of image quality, reduction of data amount for sparse scene and enhancement of system performance. The sparse signal processing has also been applied in several specific radar imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Curlander J C, McDonough R N. Synthetic Aperture Radar: Systems and Signal Processing. New York: Wiley, 1991

    MATH  Google Scholar 

  2. Henderson F M, Lewis A J. Principles and applications of imaging radar. In: Manual of Remote Sensing. New York: John Wiley and Sons, 1998

    Google Scholar 

  3. Wiley C, Ariz P. Pulsed Doppler Radar Methods and Apparatus. US Patent 3,196,436. 1965

  4. Wiley C A. Synthetic aperture radars: a paradigm for technology evolution. IEEE Trans Aerosp Electron Syst, 1985: 21: 440–443

    Google Scholar 

  5. Wikipedia. Synthetic Aperture Radar. https://en.wikipedia.org/wiki/Synthetic_aperture_radar

  6. NASA. Missions-Seasat 1. http://science.nasa.gov/missions/seasat-1/

  7. Jordan R L. The Seasat-A synthetic aperture radar system. IEEE J Ocean Eng, 1980, 5: 154–164

    Google Scholar 

  8. CSA. CSA: RadarSat-1. http://www.asc-csa.gc.ca/eng/satellites/radarsat1/

  9. DLR. TerraSAR-X-Germany’s radar eye in space. http://www.dlr.de/eo/en/desktopdefault.aspx/tabid-5725/9296_read-15979/

  10. Jakowatz C V, Wahl D E, Eichel P H, et al. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach. Norwell: Kluwer Academic Publishers, 1996

    Google Scholar 

  11. Massonnet D, Souyris J C. Imaging with Synthetic Aperture Radar. Lausanne: EFPL Press, 2008

    Google Scholar 

  12. Brown W M, Porcello L J. An introduction to synthetic-aperture radar. IEEE Spectrum, 1969, 6: 52–62

    Google Scholar 

  13. Sherwin C W, Ruina J P, Rawcliffe R D. Some early developments in synthetic aperture radar systems. IRE Trans Military Electron, 1962, 1051: 111–115

    Google Scholar 

  14. Moore G E. Cramming more components onto integrated circuits. Electron Mag, 1998, 86: 82–85

    Google Scholar 

  15. Woodward P M. Probability and Information Theory, with Application to Radar. New York: Pergamon, 1953

    Google Scholar 

  16. Cook C E, Bernfeld M. Radar Signals-An Introduction to Theory and Application. Norwood: Artech House, 1993

    Google Scholar 

  17. Nyquist H. Certain topics in telegraph transmission theory. Trans Amer Inst Electr Engin, 1928, 47: 617–644

    Google Scholar 

  18. Shannon C E. Communication in the presence of noise. Proc IRE, 1949, 37: 10–21

    MathSciNet  Google Scholar 

  19. Baraniuk R G, Candès E, Elad M, et al. Applications of sparse representation and compressive sensing. Proc IEEE, 2010, 98: 906–09

    Google Scholar 

  20. Russell B. History of Western Philosophy. London: George Allen & Unwin Ltd, 1946

    Google Scholar 

  21. Donoho D L. Compressed Sensing. IEEE Trans Inf Theory, 2006. 52: 1289–1306

    MathSciNet  Google Scholar 

  22. Candès E J, Tao T. Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans Inf Theory, 2006, 52: 5406–5425

    Google Scholar 

  23. Candès E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math, 2006, 59: 1207–1223

    MATH  Google Scholar 

  24. Mallat S, Yu G. Super-resolution with sparse mixing estimators. IEEE Trans Image Process, 2010, 19: 2889–2900

    MathSciNet  Google Scholar 

  25. Zhang Y, Mei S, Chen Q, et al. A novel image/video coding method based on compressed sensing theory. In: Proc of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Las Vegas, 2008. 1361–1364

  26. Berger C R, Zhou S, Preisig J, et al. Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressed sensing. IEEE Trans Signal Process, 2010, 58: 1708–1721

    MathSciNet  Google Scholar 

  27. Baraniuk R, Steeghs P. Compressive radar imaging. In: Proc of IEEE Radar Conference, Boston, 2007. 128–133

  28. Patel V M, Easley G R, Healy D, et al. Compressed synthetic aperture radar. IEEE J Sel Top Signal Process, 2010, 4: 244–254

    Google Scholar 

  29. Ender J H G. On compressive sensing applied to radar. Signal Process, 2010, 90: 1402–1414

    MATH  Google Scholar 

  30. Wu Y R. Studies on theory, system, and methodology of Sparse Microwave Imaging. Statement Tasks and Project Plan of 973 Program: 2009

  31. Cumming I G, Wong F H. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Norwood: Artech House, 2004

    Google Scholar 

  32. Raney R K, Runge H, Bamler R, et al. Precision SAR processing using chirp scaling. IEEE Trans Geosci Remote Sens, 1994, 32: 786–799

    Google Scholar 

  33. Bamler R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms. IEEE Trans Geosci Remote Sens, 1992, 30: 706–713

    Google Scholar 

  34. Basu S, Bresler Y. O(N 2 log2 N) filtered backprojection reconstruction algorithm for tomography. IEEE Trans Image Process, 2000, 9: 1760–1773

    MathSciNet  MATH  Google Scholar 

  35. Xiao S, Munson Jr D C, Basu S, et al. An N 2 logN back-projection algorithm for SAR image formation. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2000

  36. Suess M, Grafmüller B, Zahn R. A novel high resolution, wide swath SAR system.In: Proc of IEEE International Geoscience and Remoye Sensing Symposium (IGARSS), Sydney, 2001. 1013–1015

  37. Suess M. Side-Looking Synthetic Aperture Radar System. European Patent 1,241,487. 2006

  38. Currie A, Brown M A. Wide-swath SAR. IEE Proc F Radar Signal Process, 1992, 139: 122–135

    Google Scholar 

  39. Elad M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. New York: Springer, 2010

    MATH  Google Scholar 

  40. Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process, 1993, 41: 3397–3415

    MATH  Google Scholar 

  41. Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM J Sci Comput, 1999, 20: 33–61

    MathSciNet  MATH  Google Scholar 

  42. Candès E J, Tao T. Decoding by linear programming. IEEE Trans Inf Theory, 2005, 51: 4203–4215

    Google Scholar 

  43. Candès E, Tao T. The Dantzig selector: Statistical estimation when p is much larger than n. The Annal Stat, 2007, 35: 2313–2351

    MATH  Google Scholar 

  44. Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2006, 52: 489–509

    MATH  Google Scholar 

  45. Candès E, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Problem, 2007, 23: 969–985

    MATH  Google Scholar 

  46. Tsaig Y, Donoho D L. Extensions of compressed sensing. Signal Process, 2006, 86: 549–571

    MATH  Google Scholar 

  47. Baraniuk R G. More is less: Signal processing and the data deluge. Science, 2011, 331: 717–719

    Google Scholar 

  48. Baron D, Wakin M B, Duarte M F, et al. Distributed Compressed Sensing. Technical Report. Rice: Rice University, 2005, http://dsp.rice.edu/cs/

    Google Scholar 

  49. Duarte M F, Sarvotham S, Baron D, et al. Distributed compressed sensing of jointly sparse signals. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2005. 1537–1541

  50. Zhang Z, Zhang B C, Hong W, et al. Waveform design for Lq regularization based radar imaging and an approach to radar imaging with non-moving platform. In: Proc of European Conference on Synthetic Aperture Radar (EuSAR), Nuremberg, 2012

  51. Ahmed N, Natarajan T, Rao K R. Discrete cosine transform. IEEE Trans Comput, 1974, 100: 90–93

    MathSciNet  Google Scholar 

  52. Daubechies I. Ten Lectures on Wavelets. Philadelphia: SIAM Publications, 2006

    Google Scholar 

  53. Ron A, Shen Z. Affine systems in L 2(d): the analysis of the Analysis operator. J Function Analys, 1997, 148: 408–447

    MathSciNet  MATH  Google Scholar 

  54. Velisavljevic V, Dragotti P L, Vetterli M. Directional wavelet transforms and frames. In: Proc of Int Conf Image Processing, Rochester, 2002. 589–592

  55. Candès E J. Curvelets: A Surprisingly Effective Nonadaptive Representation for Objects with Edges. Technical Report. DTIC Document, 2000. www.curvelet.org/papers/Curve99.pdf

  56. Olshausen B A, Field D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996, 381: 607–609

    Google Scholar 

  57. Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images. Raleigh: SciTech Publishing, 2004

    Google Scholar 

  58. Tian Y, Jiang C L, Lin Y G, et al. An evaluation method for sparse microwave imaging radar system using phase diagrams. In: Proc of CIE Radar Conference, Chengdu, 2011

  59. Zhang B C, Jiang H, Hong W, et al. Synthetic aperture radar imaging of sparse targets via compressed sensing. In: Proc of 8th European Conference on Synthetic Aperture Radar (EUSAR), Aachen, 2010

  60. Jiang H, Zhang B C, Lin Y G, et al. Random noise SAR based on compressed sensing. In: Proc of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, 2010. 4624–4627

  61. Shastry M C, Narayanan R M, Rangaswamy M. Compressive radar imaging using white stochastic waveforms. In: Proc of International Waveform Diversity and Design Conference (WDD), Niagara Falls, 2010. 90–94

  62. Bahai A R S, Saltzberg B R, Ergen M. Multi-Carrier Digital Communications: Theory and Applications of OFDM. New York, NY: Springer Science and Business Media Inc, 2004

    Google Scholar 

  63. Berger C R, Zhou S, Willett P, et al. Compressed sensing for OFDM/MIMO radar. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2008. 213–217

  64. Berger C R, Demissie B, Heckenbach J, et al. Signal processing for passive radar using OFDM waveforms. IEEE J Sel Top Signal Process, 2010, 4: 226–238

    Google Scholar 

  65. Vetterli M, Marziliano P, Blu T. Sampling signals with finite rate of innovation. IEEE Trans Signal Process, 2002, 50: 1417–1428

    MathSciNet  Google Scholar 

  66. Healy D. Analog-to-Information (A-to-I). 2005. http://www.darpa.mil/mto/solicitations/baa05-35/s/index.html. dARPA/MTO Broad Agency Announcement (BAA) #05-35

  67. Healy D, Brady D J. Compression at the physical interface. IEEE Signal Process Mag, 2008, 25: 67–71

    Google Scholar 

  68. Laska J N, Kirolos S, Duarte M F, et al. Theory and implementation of an analog-to-information converter using random demodulation. In: Proc of IEEE International Symposium on Circuits and Systems (ISCAS), New Orleans, 2007. 1959–1962

  69. Eldar Y C. Compressed Sensing of Analog Signals. Comput Res Reposit, 2008

  70. Mishali M, Eldar Y C, Elron A. Xampling, Part I: Practice. ArXiv:09110519. 2009. http://arxiv.org/pdf/0911.0519v3

  71. Mishali M, Eldar Y C. From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals. IEEE J Sel Top Signal Process, 2010, 4: 375–391

    Google Scholar 

  72. Mishali M, Eldar Y, Dounaevsky O, et al. Xampling: Analog to digital at sub-Nyquist rates. IET Circ Dev Syst, 2011, 5: 8–20

    Google Scholar 

  73. Mishali M, Eldar Y C. Xampling: Compressed sensing of analog signals. ArXiv:11032960. 2011. http://arxiv.org/pdf/1103.2960

  74. Tropp J A, Laska J N, Duarte M F, et al. Beyond Nyquist: Efficient sampling of sparse bandlimited signals. IEEE Trans Inf Theory, 2010, 56: 520–544

    MathSciNet  Google Scholar 

  75. Balakrishnan A. On the problem of time jitter in sampling. IRE Trans Inform Theory, 1962, 8: 226–236

    MATH  Google Scholar 

  76. Sun J P, Zhang Y X, Chen Z B, et al. A novel spaceborne SAR wide-swath imaging approach based on Poisson disk-like nonuniform sampling and compressive sensing. Sci China Inf Sci, 2012, 55: 1876–1887

    Google Scholar 

  77. Candès E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Process Mag, 2008, 25, 2: 21–30

    Google Scholar 

  78. Carrara W G, Goodman R S, Majewski R M. Spotlight Synthetic Aperture Radar-Signal Processing Algorithms. Norwood, 1995

  79. Belcher D P, Baker C J. High resolution processing of hybrid strip-map/spotlight mode SAR. IEE Proc Radar Sonar Nav, 1996, 143: 366–374

    Google Scholar 

  80. Mittermayer J, Lord R, Borner E. Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm. In: Proc of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toulouse, 2003. 1462–1464

  81. De Zan F, Guarnieri A M. TOPSAR: Terrain observation by progressive scans. IEEE Trans Geosci Remote Sens, 2006, 44: 2352–2360

    Google Scholar 

  82. Tropp J A, Wright S J. Computational methods for sparse solution of linear inverse problems. Proc IEEE, 2010, 98: 948–958

    Google Scholar 

  83. Kim S J, Koh K, Lustig M, et al. An interior-point method for large-scale l1-regularized least squares. IEEE J Sel Top Signal Process, 2007, 1: 606–617

    Google Scholar 

  84. Candès E, Romberg J. l1-magic: Recovery of sparse signals via convex Programming. 2005. www.acm.caltech.edu/l1magic/downloads/l1magic.pdf

  85. Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J Sel Top Signal Process, 2007, 1: 586–597

    Google Scholar 

  86. Van Den Berg E, Friedlander M. Probing the Pareto frontier for basis pursuit solutions. SIAM J Sci Comput, 2008, 31: 890–912

    MathSciNet  MATH  Google Scholar 

  87. Daubechies I, Defrise M, De Mol C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun Pure Appl Math, 2004, 57: 1413–1457

    MATH  Google Scholar 

  88. Bioucas-Dias J M, Figueiredo M A T. Two-step algorithms for linear inverse problems with non-quadratic regularization. In: Proc of IEEE Int Conf Image Processing, San Antonio, 2007

  89. Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imag Sci, 2009, 2: 183–202

    MathSciNet  MATH  Google Scholar 

  90. Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for L1-minimization with applications to compressed sensing. SIAM J Imag Sci, 2008, 1: 143–168

    MathSciNet  MATH  Google Scholar 

  91. Hale E T, Yin W, Zhang Y. Fixed-point continuation for L1 minimization: methodology and convergence. SIAM J Optim, 2008: 1107–1130

  92. Hale E T, Yin W, Zhang Y. Fixed-point continuation applied to compressed sensing: implementation and numerical experiments. J Comput Math, 2010, 28: 170–194

    MathSciNet  MATH  Google Scholar 

  93. Becker S, Bobin J, Candès E. NESTA: A fast and accurate first-order method for sparse recovery. ArXiv: 09043367, 2009. http://arxiv.org/pdf/0904.3367

  94. Becker S R, Candès E J, Grant M C. Templates for convex cone problems with applications to sparse signal recovery. Math Program Comput, 2011, 3: 165–218

    MathSciNet  Google Scholar 

  95. Yang J, Zhang Y. Alternating direction algorithms for 1-problems in compressive sensing. ArXiv:09121185, 2009. http://arxiv.org/pdf/0912.1185

  96. Lu Z, Pong T K, Zhang Y. An Method for Finding Dantzig Selectors. ArXiv: 10114604, 2010. http://arxiv.org/pdf/1011.4604

  97. Davenport M A, Duarte M F, Eldar Y C, et al. Chapter I: Introduction to compressed sensing. In: Compressed Sensing: Theory and Applications. Cambridge: Cambridge University Press, 2012

    Google Scholar 

  98. Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory, 2007, 53: 4655–4666

    MathSciNet  Google Scholar 

  99. Donoho D L, Drori I, Tsaig Y, et al. Sparse Solution of Underdetermined Linear Equations by Stagewise Orthogonal Matching Pursuit. Technical Report. Department of Statistics, Stanford University, 2006. http://nmetis.dk/pic/Speciale/HenrikPedersen/Henrik%20Pederse%ns%20Artikler/Compressed%20Sensing/Donoho.pdf

  100. Blumensath T, Davies M E. Gradient pursuits. IEEE Trans Signal Process, 2008, 56: 2370–2382

    MathSciNet  Google Scholar 

  101. Dai W, Milenkovic O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inf Theory, 2009, 55: 2230–2249

    MathSciNet  Google Scholar 

  102. Needell D, Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J Sel Top Signal Process, 2010, 4: 310–316

    Google Scholar 

  103. Needell D, Tropp J A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Analys, 2009, 26: 301–321

    MathSciNet  MATH  Google Scholar 

  104. Blumensath T, Davies M E. Iterative hard thresholding for compressed sensing. Appl Comput Harmon Analys, 2009, 27: 265–274

    MathSciNet  MATH  Google Scholar 

  105. Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett, 2007, 14: 707–710

    Google Scholar 

  106. Rao B D, Kreutz-Delgado K. An affine scaling methodology for best basis selection. IEEE Trans Signal Process, 1999, 47: 187–200

    MathSciNet  MATH  Google Scholar 

  107. Chartrand R, Yin W. Iteratively reweighted algorithms for compressive sensing. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2008. 3869–3872

  108. Daubechies I, DeVore R, Fornasier M, et al. Iteratively reweighted least squares minimization for sparse recovery. Commun Pure Appl Math, 2010, 63: 1–38

    MathSciNet  MATH  Google Scholar 

  109. Krishnan D, Fergus R. Fast image deconvolution using hyper-Laplacian priors. In: Advances in Neural Information Processing Systems (NIPS), 2009. 1033–1041

  110. Xu Z B, Zhang H, Wang Y, et al. L 1/2 regularizer. Sci China Inf Sci, 2010, 53: 1159–1169

    MathSciNet  Google Scholar 

  111. Wipf D P, Rao B D. Sparse Bayesian learning for basis selection. IEEE Trans Signal Process, 2004, 52: 2153–2164

    MathSciNet  Google Scholar 

  112. Ji S, Xue Y, Carin L. Bayesian compressive sensing. IEEE Trans Signal Process, 2008, 56: 2346–2356

    MathSciNet  Google Scholar 

  113. Ji S, Dunson D, Carin L. Multitask compressive sensing. IEEE Trans Signal Process, 2009, 57: 92–106

    MathSciNet  Google Scholar 

  114. Babacan S D, Mancera L, Molina R, et al. Non-convex priors in Bayesian compressed sensing. In: Proc of 17th European Signal Processing Conference (EUSIPCO), Glasgow, 2009

  115. Yoon Y S, Amin M G. Compressed sensing technique for high-resolution radar imaging. In: Proc SPIE, 2008. 6968

  116. Stojanovic I, Karl W C, Çetin M. Compressed sensing of monostatic and multistatic SAR. In: Proc SPIE, 2009. 7337

  117. Huang Q, Qu L, Wu B, et al. UWB through-wall imaging based on compressive sensing. IEEE Trans Geosci Remote Sens, 2010, 48: 1408–1415

    Google Scholar 

  118. Jiang C L, Jiang H, Zhang B C, et al. SNR analysis for SAR imaging from raw data via compressed sensing. In: Proc of European Conference on Synthetic Aperture Radar (EUSAR), Nuremberg, 2012

  119. Austin C D, Ertin E, Moses R L. Sparse Multipass 3D SAR imaging: applications to the GOTCHA data set. In: Proc SPIE, 2009. 7337

  120. Zhang L, Xing M, Qiu C W, et al. Resolution enhancement for inversed synthetic aperture radar imaging under low SNR via improved compressive sensing. IEEE Trans Geosci Remote Sens, 2010. 48,10: 3824–3838

    Google Scholar 

  121. Xie X C, Zhang Y H. High-resolution imaging of moving train by ground-based radar with compressive sensing. Electron Lett, 2010, 46: 529–531

    Google Scholar 

  122. Alonso M T, López-Dekker P, Mallorqui J J. A novel strategy for radar imaging based on compressive sensing. IEEE Trans Geosci Remote Sens, 2010, 48: 4285–4295

    Google Scholar 

  123. Wu Y R, Xu Z B, Hong W, et al. Sparse SAR Imaging Algorithm based on SAR Raw Data Simulator (in Chinese). China Patent, 201110182202.9. 2012

  124. Andrecut M. Fast GPU implementation of sparse signal recovery from random projections. ArXiv: 08091833, 2008. http://arxiv.org/pdf/0809.1833

  125. Borghi A, Darbon J, Peyronnet S, et al. A Simple Compressive Sensing Algorithm for Parallel Many-Core Architectures. Technical Report. 2008. http://www-micrel.deis.unibo.it/benini/files/MD/cam08-64.pdf

  126. Liu B, Zou Y M, Ying L. SparseSENSE: application of compressed sensing in parallel MRI. In: Proc of International Conference on Information Technology and Applications in Biomedicine (ITAB), Shenzhen, 2008. 127–130

  127. Chang C H, Ji J. Compressed sensing MRI with multichannel data using multicore processors. Magn Reson Med, 2010, 64: 1135–1139

    Google Scholar 

  128. Tropp J A. Greed is good: Algorithmic results for sparse approximation. IEEE Trans Inf Theory, 2004, 50: 2231–2242

    MathSciNet  Google Scholar 

  129. Ben-Haim Z, Eldar Y C, Elad M. Coherence-based performance guarantees for estimating a sparse vector under random noise. IEEE Trans Signal Process, 2010, 58: 5030–5043

    MathSciNet  Google Scholar 

  130. Stanley H E. Introduction to Phase Transitions and Critical Phenomena. Oxford: Oxford Press, 1987

    Google Scholar 

  131. Donoho D, Stodden V. Breakdown point of model selection when the number of variables exceeds the number of observations. In: Proc of IEEE International Joint Conference on Neural Network (IJCNN), Vancouver, 2006. 1916–1921

  132. Donoho D L, Tsaig Y. Fast Solution of L1-Norm Minimization Problems When the Solution May Be Sparse. Technical Report. Dept. of Statistics, Stanford University, 2006. http://www-dsp.rice.edu/files/cs/FastL1.pdf

  133. Donoho D, Tanner J. Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing. Philosoph Trans Royal Soc A Math Phys Engin Sci, 2009, 367: 4273–4293

    MathSciNet  MATH  Google Scholar 

  134. Donoho D, Jin J. Feature selection by higher criticism thresholding achieves the optimal phase diagram. Philosoph Trans Royal Soc A Math Phys Engin Sci, 2009, 367: 4449–4470

    MathSciNet  MATH  Google Scholar 

  135. Zhu X X, Bamler R. Super-resolution power and robustness of compressive sensing for spectral estimation with application to spaceborne tomographic SAR. IEEE Trans Geosci Remote Sens, 2012, 50: 247–258

    Google Scholar 

  136. Herman M A, Strohmer T. High-resolution radar via compressed sensing. IEEE Trans Signal Process, 2009, 57: 2275–2284

    MathSciNet  Google Scholar 

  137. Jiang H. Study on Processing Algorithm and Analysis of Imaging Performance of Compressed Sensing Radar via Information Theory. Master’s thesis. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2011

    Google Scholar 

  138. Jiang C L, Zhang B C, Zhang Z, et al. Experimental results and analysis of Sparse Microwave Imaging from spaceborne radar raw data. Sci China Inf Sci, 2012, 55: 1801–1815

    MathSciNet  Google Scholar 

  139. Zhang B C, Hong W, Wu Y R, et al. A Radar Imaging Azimuth Ambiguity Reducing Method Based on q Regularization (in Chinese). China Patent, 201110310655.5. 2012.

  140. Lin Y G, Zhang B C, Jiang H, et al. Multi-channel SAR imaging based on distributed compressive sensing. Sci China Inf Sci, 2012, 55: 245–259

    MathSciNet  Google Scholar 

  141. Lin Y G, Zhang B C, Hong W, et al. Along-track interferometric SAR imaging based on distributed compressed sensing. Electron Lett, 2010, 46: 85–860

    Google Scholar 

  142. Lin Y G. Study on Multi-channel SAR Imaging Based on Compressive Sensing. Ph.D. thesis. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2011

    Google Scholar 

  143. Farhat N H, Werner C L, Chu T H. Prospects for three-dimensional projective and tomographic imaging radar networks. Radio Sci, 1984, 19: 1347–1355

    Google Scholar 

  144. Mahafza B R, Sajjadi M. Three-dimensional SAR imaging using linear array in transverse motion. IEEE Trans Aerosp Electron Syst, 1996, 32: 499–510

    Google Scholar 

  145. Reigber A, Moreira A. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans Geosci Remote Sens, 2000, 38: 2142–2152

    Google Scholar 

  146. Zhu X X, Bamler R. Tomographic SAR inversion by L1-norm regularization — the compressive sensing approach. IEEE Trans Geosci Remote Sens, 2010, 48: 3839–3846

    Google Scholar 

  147. Baselice F, Ferraioli G, Pascazio V. Three dimensional reconstruction using COSMO-SkyMed high-resolution data. In: Proceedings of Microwaves, Radar and Remote Sensing Symposium (MRRS), 2011. 161–164

  148. Budillon A, Evangelista A, Schirinzi G. Three-dimensional SAR focusing from multipass signals using compressive sampling. IEEE Trans Geosci Remote Sens, 2011, 49: 488–499

    Google Scholar 

  149. Zhu X X, Bamler R. Very High Resolution SAR tomography via compressive sensing. In: Proc of Fringe Workshop Advances in the Science and Applications of SAR Interferometry, Frascati, 2009

  150. Zhu X X, Bamler R. Compressive sensing for high resolution differential SAR tomography-the SL1MMER algorithm. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, 2010. 17–20

  151. Zhu X X, Bamler R. Within the resolution cell: Super-resolution in tomographic SAR imaging. In: Proc of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, 2011. 2401–2404

  152. Zhu X X, Bamler R. Demonstration of Super-Resolution for Tomographic SAR Imaging in Urban Environment. IEEE Trans Geosci Remote Sens, 2012, in press

  153. Khomchuk P, Bilik I, Kasilingam D. Compressive sensing-based SAR tomography. In: Proc of IEEE Radar Conference, Washington, 2010. 354–358

  154. Tan W X. Study on Theory and Algorithms for Three-Dimensional Synthetic Aperture Radar Imaging. Ph.D. thesis. Beijing: Institute of Electronics, Chinese Academy of Science, 2009

    Google Scholar 

  155. Wehner D R. High Resolution Radar. Norwood: Artech House Inc, 1987

    Google Scholar 

  156. Zhang L, Xing M, Qiu C W, et al. Achieving higher resolution ISAR imaging with limited pulses via compressed sampling. IEEE Geosci Remote Sens Lett, 2009, 6: 567–71

    Google Scholar 

  157. Wang H, Quan Y, Xing M, et al. ISAR imaging via sparse probing frequencies. IEEE Geosci Remote Sens Lett, 2011, 8: 451–455

    Google Scholar 

  158. Zhang L, Qiao Z, Xing M, et al. High-resolution ISAR imaging with sparse stepped-frequency waveforms. IEEE Trans Geosci Remote Sens, 2011, 49: 4630–4651

    Google Scholar 

  159. Lei Z, Qiao Z, Xing M, et al. High resolution ISAR imaging by exploiting sparse apertures. IEEE Trans Anten Propag, 2011, 60: 997–1008

    Google Scholar 

  160. Zhu F, Zhang Q, Xiang Y, et al. Compressive Sensing in ISAR spectrogram data transmission. In: Proc of Asian-Pacific Conference on Synthetic Aperture Radar (APSAR), Xi’an, 2009. 89–92

  161. Zhu F, Zhang Q, Lei Q, et al. Reconstruction of moving target’s HRRP using sparse frequency-stepped chirp signal. IEEE Sensors J, 2011, 11: 2327–2334

    Google Scholar 

  162. Ye F, Liang D, Zhu J. ISAR enhancement technology based on compressed sensing. Electron Lett, 2011, 47: 620–621

    Google Scholar 

  163. Rao W, Li G, Wang X, et al. ISAR imaging of uniformly rotating targets via parametric weighted L1 minimization. In: Proc of Asian-Pacific Conference on Synthetic Aperture Radar (APSAR), Seoul, 2011

  164. Daniels D J. Surface-penetrating radar. Electron Commun Engin J, 1996, 8: 165–182

    Google Scholar 

  165. Daniels D J. Ground Penetrating Radar. Herts: The Institution of Engineering and Technology, 2004

    Google Scholar 

  166. Gurbuz A C, McClellan J H, Scott W R. Compressive sensing for subsurface imaging using ground penetrating radar. Signal Process, 2009, 89: 1959–1972

    MATH  Google Scholar 

  167. Feng X, Sato M. Pre-stack migration applied to GPR for landmine detection. Inverse Problem, 2004, 20: S99

    MATH  Google Scholar 

  168. Stolt R H. Migration by Fourier transform. Geophysics, 1978, 43: 23–48

    Google Scholar 

  169. Gurbuz A C, McClellan J H, Scott W R. Compressive sensing for GPR imaging. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2007. 2223–2227

  170. Gurbuz A C, McClellan J H, Scott W R. GPR imaging using compressed measurements. In: Proc of IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, 2008. 11–13

  171. Suksmono A B, Bharata E, Lestari A A, et al. A compressive SFCW-GPR system. In: Proc of 12th Int Conf on Ground Penet Radar, Birmingham, 2008. 16–19

  172. Suksmono A B, Bharata E, Lestari A A, et al. Compressive stepped-frequency continuous-wave ground-penetrating radar. IEEE Geosci Remote Sens Lett, 2010, 7: 665–669

    Google Scholar 

  173. Gurbuz A C, McClellan J H, Scott W R. A compressive sensing data acquisition and imaging method for stepped frequency GPRs. IEEE Trans Signal Process, 2009, 57: 2640–2650

    MathSciNet  Google Scholar 

  174. Soldovieri F, Solimene R, Ahmad F. A fast data acquisition and processing scheme for through-the-wall radar imaging. In: Proc SPIE, 2011. 8021

  175. Varshney K R, CII J W, et al. Joint image formation and anisotropy characterization in wide-angle SAR. In: Proc SPIE, 2006. 6237

  176. Stojanovic I, C Proceedings of SPIE, 2008. 6970

  177. Soumekh M. Reconnaissance with slant plane circular SAR imaging. IEEE Trans Image Process, 1996, 5: 1252–1265

    Google Scholar 

  178. Potter L C, Ertin E, Parker J T, et al. Sparsity and compressed sensing in radar imaging. Proc IEEE, 2010, 98: 1006–1020

    Google Scholar 

  179. Lin Y, Hong W, Tan W X, et al. Compressed sensing technique for circular SAR imaging. In: Proc of IET International Radar Conference, Guilin, 2009

  180. Lin Y. Study on Algorithms for Circular Synthetic Aperture Radar Imaging. Ph.D. thesis. Beijing: Institute of Electronics, Chinese Academy of Sciences, 2011

    Google Scholar 

  181. Fishler E, Haimovich A, Blum R, et al. MIMO radar: An idea whose time has come. In: Proc of IEEE Radar Conference, Philadelphia, 2004. 71–78

  182. Li J, Stoica P. MIMO Radar Signal Processing. Hoboken: Wiley, 2009

    Google Scholar 

  183. Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2003. 54–59

  184. Chen C Y, Vaidyanathan P P. Compressed sensing in MIMO radar. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2008. 41–44

  185. Strohmer T, Friedlander B. Compressed sensing for MIMO radar-algorithms and performance. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2009. 464–468

  186. Petropulu A P, Yu Y, Poor H V. Distributed MIMO radar using compressive sampling. In: Conference Record of Asilomar Conference on Signals, Systems and Computers (ACSSC), Pacific Grove, 2008. 203–207

  187. Yu Y, Petropulu A, Poor H V. MIMO radar using compressive sampling. IEEE J Sel Top Signal Process, 2010, 4: 146–163

    Google Scholar 

  188. Yu Y, Petropulu A, Poor H. Measurement matrix design for compressive sensing based MIMO radar. IEEE Trans Signal Process, 2011, 59: 5338–5352

    MathSciNet  Google Scholar 

  189. Gogineni S, Nehorai A. Target estimation using sparse modeling for distributed MIMO radar. IEEE Trans Signal Process, 2011, 59: 5315–5325

    MathSciNet  Google Scholar 

  190. Tan X, Roberts W, Li J, et al. Sparse learning via iterative minimization with application to MIMO radar imaging. IEEE Trans Signal Process, 2011, 59: 1088–1101

    MathSciNet  Google Scholar 

  191. Berger C R, Zhou S, Willett P. Signal extraction using compressed sensing for passive radar with OFDM signals. In: Proc of 11th International Conference on Information Fusion, Cologne, 2008

  192. Xu H, He X, Yin Z, et al. Compressive sensing MIMO radar imaging based on inverse scattering model. In: Proc of IEEE International Conference on Signal Processing (ICSP), Beijing, 2010. 1999–2002

  193. Wang J, Li G, Zhang H, et al. SAR Imaging of Moving Targets via Compressive Sensing. ArXiv: 11041074, 2011. http://arxiv.org/pdf/1104.1074

  194. Khwaja A S, Ma J. Applications of compressed sensing for SAR moving-target velocity estimation and image compression. IEEE Trans Instrum Meas, 2011, 60: 2848–2860

    Google Scholar 

  195. Stojanovic I, Karl W C. Imaging of moving targets with multi-static SAR using an overcomplete dictionary. IEEE J Sel Top Signal Process, 2010, 4: 164–176

    Google Scholar 

  196. Ferrara M, Jackson J, Stuff M. Three-dimensional sparse-aperture moving-target imaging. In: Proceedings of SPIE, 2008. 6970

  197. Benz U, Strodl K, Moreira A. A comparison of several algorithms for SAR raw data compression. IEEE Trans Geosci Remote Sens, 1995, 33: 1266–1276

    Google Scholar 

  198. Kwok R, Johnson W. Block adaptive quantization of Magellan SAR data. IEEE Trans Geosci Remote Sens, 1989, 27: 375–383

    Google Scholar 

  199. Bhattacharya S, Blumensath T, Mulgrew B, et al. Fast encoding of synthetic aperture radar raw data using compressed sensing. In: Proc of 14th IEEE Workshop on Statistical Signal Processing, Madison, 2007. 448–452

  200. Bhattacharya S, Blumensath T, Mulgrew B, et al. Synthetic aperture radar raw data encoding using compressed sensing. In: Proc of IEEE Radar Conference, Rome, 2008

  201. Sarvotham S, Baron D, Baraniuk R G. Measurements vs. bits: Compressed sensing meets information theory. In: Proc of 44th Allerton Conf Comm Ctrl Computing, Monticello, 2006

  202. Wainwright M J. Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting. IEEE Trans Inf Theory, 2009, 55: 5728–5741

    MathSciNet  Google Scholar 

  203. Aeron S, Saligrama V, Zhao M. Information theoretic bounds for compressed sensing. IEEE Trans Inf Theory, 2010, 56: 5111–5130

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BingChen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Hong, W. & Wu, Y. Sparse microwave imaging: Principles and applications. Sci. China Inf. Sci. 55, 1722–1754 (2012). https://doi.org/10.1007/s11432-012-4633-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4633-4

Keywords

Navigation