Skip to main content
Log in

Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play significantly different roles. The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles. The nightside chorus waves can yield significant energization at larger pitch angles, but cannot efficiently resonate with the energetic electrons at lower pitch angle. Due to the numerical difficulty in fully solving Fokker-Planck equation, the cross diffusion terms are often ignored in the previous work. Here the effect of cross diffusion at different regions is further analyzed. On the dayside, ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles, and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism. On the nightside, ignoring cross diffusion overestimates the electron phase space density (PSD) by about one order of magnitude at larger pitch angles. These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside, which should be included in the future radiation belt models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu K, Xia L D, Chen Y, et al. Statistical study on the relationship between halo CME and coronal dimming. Sci China Tech Sci, 2010, 53: 2020–2034

    Article  Google Scholar 

  2. Zhao H, Zong Q G, Wei Y, et al. Influence of solar wind dynamic pressure on geomagnetic Dst index during various magnetic storm. Sci China Tech Sci, 2011, 54: 1445–1454

    Article  MATH  Google Scholar 

  3. Cheng Z W, Shi J K, Zhang T L, et al. The relations between density of FACs in the plasma sheet boundary layers and K p index. Sci China Tech Sci, 2011, 54: 2987–2992

    Article  Google Scholar 

  4. Sun W J, Shi Q Q, Fu S Y, et al. Statistical research on the motion properties of the magnetotail current sheet: Cluster observations. Sci China Tech Sci, 2010, 53: 1732–1738

    Article  Google Scholar 

  5. Chu X N, Pu Z Y, Cao X, et al. THEMIS observations of two substorms on February 26, 2008. Sci China Tech Sci, 2010, 53: 1328–1338

    Article  Google Scholar 

  6. Blake J B, Kolasinski W A, Fillius R W, et al. Injection of electrons and protons with energies of tens of MeV into L < 3 on 24 March 1991. Geophys Res Lett, 1992, 19: 821–824

    Article  Google Scholar 

  7. Reeves G D, McAdams K L, Friedel R H W, et al. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys Res Lett, 2003, 30: 1529

    Article  Google Scholar 

  8. Bortnik J, Thorne R M, O’Brien T P, et al. Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event. J Geophys Res, 2006, 111: A12216

    Article  Google Scholar 

  9. Zong Q G, Zhou X Z, Wang Y F, et al. Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res, 2009, 114: A10204

    Article  Google Scholar 

  10. Su Z P, Xiao F L, Zheng H N, et al. CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event. Geophys Res Lett, 2011, 38: L06106

    Article  Google Scholar 

  11. Yuan C J, Zong Q G. Dynamic variations of the outer radiation belt during magnetic storms for 1.5–6.0 MeV electrons. Sci China Tech Sci, 2011, 54: 431–440

    Article  Google Scholar 

  12. Li L, Feng Y Y. Energetic electron flux distribution model in the inner and middle magnetosphere. Sci China Tech Sci, 2011, 54: 441–446

    Article  Google Scholar 

  13. He Z G, Xiao F L, Zong Q G, et al. Multi-satellite observations on the storm-time enhancements of energetic outer zone electron fluxes driven by chorus waves. Sci China Tech Sci, 2011, 54: 2209–2216

    Article  Google Scholar 

  14. Wang C R, Zong Q G, Wang Y F. Propagation of interplanetary shock excited ultra low frequency (ULF) waves in magnetosphere-ionosphere-atmosphere-Multi-spacecraft “Cluster” and ground-based magnetometer observations. Sci China Tech Sci, 2010, 53: 2528–2534

    Article  Google Scholar 

  15. Gao H, Xu J Y, Chen G M, et al. Global distributions of OH and O2 (1.27 m) nightglow emissions observed by TIMED satellite. Sci China Tech Sci, 2011, 54: 447–456

    Article  Google Scholar 

  16. Xu T, Wu Z S, Hu Y L, et al. Statistical analysis and model of spread F occurrence in China. Sci China Tech Sci, 2011, 54: 1725–1731

    Google Scholar 

  17. Dessler A J, Karplus R. Some effects of diamagnetic ring currents on van Allen radiation. J Geophys Res, 1961, 66: 2289–2295

    Article  Google Scholar 

  18. McIlwain C E. Ring current effects on trapped particles. J Geophys Res, 1966, 71: 3623–3628

    Article  Google Scholar 

  19. Kim H J, Chan A A. Fully adiabatic changes in storm time relativistic electron fluxes. J Geophys Res, 1997, 102: 22107–22116

    Article  Google Scholar 

  20. Su Z P, Xiao F L, Zheng H N, et al. Combined radial diffusion and adiabatic transport of radiation belt electrons with arbitrary pitch-angles. J Geophys Res, 2011, 115: A10249

    Article  Google Scholar 

  21. Su Z P, Xiao F L, Zheng H N, et al. Radiation belt electron dynamics driven by adiabatic transport, radial diffusion, and wave-particle interactions. J Geophys Res, 2011, 116: A04205

    Article  Google Scholar 

  22. Schulz M, Eviatar A. Diffusion of equatorial particles in the outer radiation zone. J Geophys Res, 1969, 74: 2182–2192

    Article  Google Scholar 

  23. Lyons L R, Thorne R N. Equilibrium structure of radiation belt electrons. J Geophys Res, 1973, 78: 2142–2149

    Article  Google Scholar 

  24. Brautigam D H, Albert J M. Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm. J Geophys Res, 2000, 105: 291–310

    Article  Google Scholar 

  25. Horne R B, Thorne R M. Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys Res Lett, 1998, 25: 3011–3014

    Article  Google Scholar 

  26. Summers D, Thorne R M, Xiao F L. Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J Geophys Res, 1998, 103: 20487–20500

    Article  Google Scholar 

  27. Albert J M. Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma. J Geophys Res, 2003, 108: A81249

    Article  Google Scholar 

  28. Su Z P, Zheng H N. Simulation of resonant interaction between energetic electrons and whistler-mode chorus in the outer radiation belt. Chin Phys Lett, 2008, 25: 4493–4496

    Article  Google Scholar 

  29. Su Z P, Zheng H N. Resonant scattering of relativistic outer zone electrons by plasmaspheric plume electromagnetic ion cyclotron waves. Chin Phys Lett, 2009, 26: 129401

    Article  Google Scholar 

  30. Xiao F L, Zong Q G, Su Z P, et al. Latest progress on interactions between VLF/ELF waves and energetic electrons in the inner magnetosphere. Sci China Earth Sci, 2010, 53: 317–326

    Article  Google Scholar 

  31. Thorne R M. Radiation belt dynamics: The importance of wave-particle interactions. Geophys Res Lett, 2010, 37: L22107

    Article  Google Scholar 

  32. Zheng H N, Su Z P, Xiong M. Pitch angle distribution evolution of energetic electrons by whistler-mode chorus. Chin Phys Lett, 2008, 25: 3515–3518

    Article  Google Scholar 

  33. Su Z P, Zheng H N, Xiong M. Dynamic evolution of outer radiation belt electrons due to whistler-mode chorus. Chin Phys Lett, 2009, 26: 039401

    Article  Google Scholar 

  34. Li W, Shprits Y Y, Thorne R M. Dynamical evolution of energetic electrons due to wave-particle interactions during storms. J Geophys Res, 2007, 112: A10220

    Article  Google Scholar 

  35. Summers D, Ni B B, Meredith N P. Timescales for radiation belt electron acceleration and loss due to resonant waveparticle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. J Geophys Res, 2007, 112: A04206

    Article  Google Scholar 

  36. Xiao F L, Su Z P, Zheng H N. Modeling of outer radiation belt electrons by multidimensional diffusion process. J Geophys Res, 2009, 114: A03201

    Article  Google Scholar 

  37. Su Z P, Zheng H N, Chen L X, et al. Numerical simulations of storm-time outer radiation belt dynamics by waveparticle interactions including cross diffusion. J Atmos Sol Phys, 73: 95–105

  38. Su Z P, Zheng H N, Wang S. Dynamic evolution of energetic outer zone electrons due to whistler mode chorus based on a realistic density model. J Geophys Res, 2009, 114: A07201

    Article  Google Scholar 

  39. He Y H, Chen L X, Xiao F L, et al. Interaction between electromagnetic waves and energetic particles by a realistic density model. Sci China Tech Sci, 2010, 53: 2552–2557

    Article  MATH  Google Scholar 

  40. Xiao F L, Chen L X, He Y H, et al. Dynamic evolution of outer radiation belt electrons driven by superluminous R-X mode waves. Sci China Tech Sci, 2010, 53: 2734–2738

    Article  Google Scholar 

  41. Tsurutani B T, Smith E J. Two types of magnetospheric ELF chorus and their substorm dependences. J Geophys Res, 1977, 82: 5112–5128

    Article  Google Scholar 

  42. Burtis W J, Helliwell R A. Magnetospheric chorus-Amplitude and growth rate. J Geophys Res, 1975, 80: 3265–3270

    Article  Google Scholar 

  43. Meredith N P, Horne R B, Anderson R R. Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J Geophys Res, 2001, 106: 13165–13178

    Article  Google Scholar 

  44. Meredith N P, Horne R B, Thorne R M, et al. Favored regions for chorus driven electron acceleration to relativistic energies in the earth’s outer radiation belt. Geophys Res Lett, 2003, 30: 1871

    Article  Google Scholar 

  45. Albert J M, Young S. Multidimensional quasi-linear diffusion of radiation belt electrons. Geophys Res Lett, 2005, 32: L14110

    Article  Google Scholar 

  46. Horne R B, Thorne R M, Glauert S A, et al. Timescale for radiation belt electron acceleration by whistler mode chorus waves. J Geophys Res, 2005, 110: A03225

    Article  Google Scholar 

  47. Varotsou A, Boscher D, Bourdarie S, et al. Simulation of the outer radiation belt electrons near geosynchronous orbit including both radial diffusion and resonant interaction with whistler-mode chorus waves. Geophys Res Lett, 2005, 32: L19106

    Article  Google Scholar 

  48. Varotsou A, Boscher D, Bourdarie S, et al. Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions. J Geophys Res, 2008, 113: A12212

    Article  Google Scholar 

  49. Kozyra J U, Rasmussen C E, Miller R H, et al. Interaction of ring current and radiation belt protons with ducted plasmaspheric hiss. 1: Diffusion coefficients and timescales. J Geophys Res, 1994, 99: 4069–4084

    Article  Google Scholar 

  50. Su Z P, Zheng H N, Wang S. Evolution of electron pitch angle distribution due to interactions with whistler mode chorus following substorm injections. J Geophys Res, 2009, 114: A08202

    Article  Google Scholar 

  51. Qi Q W, Zhang A, Jiang L L, et al. Optimization of mathematical models for thematic maps. Sci China Tech Sci, 2010, 53(Suppl. I): 15–24

    Article  Google Scholar 

  52. Su Z P, Xiao F L, Zheng H N, et al. STEERB: A three-dimensional code for storm-time evolution of electron radiation belt. J Geophys Res, 2010, 115: A09208

    Article  Google Scholar 

  53. Qiao Y, Liu H P, Bai M, et al. Extracting impervious surfaces from multi-source satellite imagery based on unified conceptual model by decision tree algorithm. Sci China Tech Sci, 2010, 53(Suppl. I): 68–74

    Article  Google Scholar 

  54. Su Z P, Zheng H N, Wang S. A parametric study on the diffuse auroral precipitation by resonant interaction with whistler mode chorus. J Geophys Res, 2010, 115: A05219

    Article  Google Scholar 

  55. Xia Y B, Pang P Y, Weng J N. Distributed GIS oriented generalized image pyramid and its practice. Sci China Tech Sci, 2010, 53(Suppl. I): 99–104

    Article  Google Scholar 

  56. Su Z P, Zheng H N, Wang S. Three-dimensional simulation of energetic outer zone electron dynamics due to waveparticle interaction and azimuthal advection. J Geophys Res, 2010, 115: A06203

    Article  Google Scholar 

  57. Zhang X D, Wang W B, Wang D F, et al. A fusion algorithm for remote sensing images based on nonsubsampled pyramids and bidimensional empirical decomposition. Sci China Tech Sci, 2010, 53(Suppl. I): 196–204

    Article  Google Scholar 

  58. Zhou Q M, Sun B. Analysis of spatio-temporal pattern and driving force of land cover change using multi-temporal remote sensing images. Sci China Tech Sci, 2010, 53(Suppl. I): 111–119

    Article  MathSciNet  Google Scholar 

  59. Xiao F L, Su Z P, Zheng H N, et al. Three-dimensional simulations of outer radiation belt electron dynamics including cross-diffusion terms. J Geophys Res, 2010, 115: A05216

    Article  Google Scholar 

  60. Luo A, Wang Y D, Chen S H. A hybrid matching method for geospatial services in a composition-oriented environment. Sci China Tech Sci, 2010, 53(Suppl. I): 213–220

    Article  MathSciNet  Google Scholar 

  61. Xiao F L, Su Z P, Chen L X, et al. A parametric study on outer radiation belt electron evolution by superluminous R-X mode waves. J Geophys Res, 2010, 115: A10217

    Article  Google Scholar 

  62. Chen Z, Shen L, Zhao Y Q, et al. Parallel algorithm for real-time contouring from grid DEM on modern GPUs. Sci China Tech Sci, 2010, 53(Suppl. I): 33–37

    Article  Google Scholar 

  63. Xiong B, Zhang X J, Jiang W S. Semi-supervised classification based on Gaussian mixture model for remote imagery. Sci China Tech Sci, 2010, 53(Suppl. I): 85–90

    Article  MATH  Google Scholar 

  64. Xiao F L, Chen L X, He Y H, et al. Modeling for precipitation loss of ring current protons by electromagnetic ion cyclotron waves. J Atoms Sol-Terres Phys, 2011, 73: 88–94

    Article  Google Scholar 

  65. Wu L, Yan M L, Gao Y, et al. A distributed spatial computing prototype system in grid environment. Sci China Tech Sci, 2010, 53(Suppl. I): 25–32

    Article  Google Scholar 

  66. Zhang G, Li Y, Li Z J. A new approach toward object-based change detection. Sci China Tech Sci, 2010, 53(Suppl. I): 105–110

    Article  MATH  Google Scholar 

  67. Fok M C, Glocer A, Zheng Q, et al. Recent developments in the radiation belt environment model. J Atmos Sol-Terr Phys, 2010, 73: 1435–1443

    Article  Google Scholar 

  68. Gong J Y, Xiang L G, Chen J, et al. Multi-source geospatial information integration and sharing in virtual globes. Sci China Tech Sci, 2010, 53(Suppl. I): 1–6

    Article  Google Scholar 

  69. Sun K M, Sui H G, Li D R, et al. A new relative radiometric consistency processing method for change detection based on wavelet transform and a low-pass filter. Sci China Tech Sci, 2010, 53(Suppl. I): 7–14

    Article  MATH  Google Scholar 

  70. Dong W H, Tian Y, Zhang Y. Automatic generalization of metro maps based on dynamic segmentation. Sci China Tech Sci, 2010, 53(Suppl. I): 158–165

    Article  Google Scholar 

  71. Thorne R M, Ni B, Tao X, et al. Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature, 2010, 467: 943–946

    Article  Google Scholar 

  72. Tao X, Thorne R M, Li W, et al. Evolution of electron pitch angle distributions following injection from the plasma sheet. J Geophys Res, 2011, 116: A04229

    Article  Google Scholar 

  73. Zheng Q, Fok M, Albert J, et al. Effects of energy and pitch angle mixed diffusion on radiation belt electrons. J Atmos Sol-Terr Phys, 2011, 73: 785–795

    Article  Google Scholar 

  74. Vasyliunas V M. A survey of low-energy electrons in the evening sector of the magnetosphere with OGO 1 and OGO 3. J Geophys Res, 1968, 73: 2839–2884

    Article  Google Scholar 

  75. Maksimovic M, Pierrard V, Lemaire J F. A kinetic model of the solar wind with Kappa distribution functions in the corona. Astron Astrophys, 1997, 324: 725–734.

    Google Scholar 

  76. Maksimovic M, Pierrard V, Riley P. Ulysses electron distributions fitted with Kappa functions. Geophys Res Lett, 1997, 24: 1151–1154

    Article  Google Scholar 

  77. Vinas A F, Mace R L, Benson R F. Dispersion characteristics for plasma resonances of Maxwellian and Kappa distribution plasmas and their comparisons to the IMAGE/RPI observations. J Geophys Res, 2005, 110: A06202

    Article  Google Scholar 

  78. Xiao F L. Modelling energetic particles by a relativistic kappa-loss-cone distribution function in plasmas. Plasma Phys Control Fusion, 2006, 48: 203–207

    Article  Google Scholar 

  79. Xiao F L, Chen L X, Li J F. Energetic particles modeled by a generalized relativistic kappa-type distribution function in plasmas. Plasma Phys Control Fusion, 2008, 50: 105002

    Article  Google Scholar 

  80. Xiao F L, Shen C, Wang Y, et al. Energetic electron distributions fitted with a relativistic kappa-type function at geosynchronous orbit. J Geophys Res, 2008, 113: A05203

    Article  MATH  Google Scholar 

  81. Xiao F L, Zhou Q H, Li C, et al. Modeling solar energetic particle by a relativistic kappa-type distribution. Plasma Phys Control Fusion, 2008, 50: 062001

    Article  Google Scholar 

  82. Lu Q M, Shan L C, Shen C L, et al. Velocity distributions of superthermal electrons fitted with a power law function in the magnetosheath: Cluster observations. J Geophys Res, 2011, 116: A03224

    Article  Google Scholar 

  83. Xu P Z, Wu Y W, Huang X M, et al. Optimizing write operation on replica in data grid. Sci China Inf Sci, 2011, 54: 1–11

    Article  Google Scholar 

  84. Jiang H T, Zhu D M. A 14/11-approximation algorithm for sorting by short block-moves. Sci China Inf Sci, 2011, 54: 279–292

    Article  MathSciNet  MATH  Google Scholar 

  85. He P, Kang L S, Johnson C G, et al. Hoare logic-based genetic programming. Sci China Inf Sci, 2011, 54: 623–637

    Article  MathSciNet  MATH  Google Scholar 

  86. Cao X L, Mo Z Y, Liu X, et al. Parallel implementation of fast multipole method based on JASMIN. Sci China Inf Sci, 2011, 54: 757–766

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FuLiang Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Xiao, F., He, Y. et al. Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons. Sci. China Inf. Sci. 55, 2624–2634 (2012). https://doi.org/10.1007/s11432-012-4698-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4698-0

Keywords

Navigation