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Abstract

This paper proves a corner occupying theorem for the two-dimensional in-
tegral rectangle packing problem, stating that if it is possible to orthogo-
nally place n arbitrarily given integral rectangles into an integral rectangu-
lar container without overlapping, then we can achieve a feasible packing
by successively placing an integral rectangle onto a bottom-left corner in
the container. Based on this theorem, we might develop efficient heuristic
algorithms for solving the integral rectangle packing problem. In fact, as a
vague conjecture, this theorem has been implicitly mentioned with different
appearances by many people for a long time.
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1. Introduction

In the Integral Rectangle Packing (IRP) problem, we are given a set
J ={1,2,---,n} of n integral rectangles, each having width w; and height
hj, and an integral rectangular container of width W and height H. The
problem is to determine whether all rectangles can be orthogonally placed
into the container without overlapping. If the answer is yes, then we should
present a non-overlapping packing pattern. In this paper, we assume that:

*Corresponding Author. Tel: 86-27-8754-3885; Email: yeetao@Qgmail.com



(1) wj, hj, W and H are positive integers, and each vertex of each rectangle
must be at integral point in the container. (2) Rectangles are rotatable, i.e.,
each rectangle can be horizontally or vertically placed into the container.

The rectangle packing problem arises in many industrial applications,
such as cutting wood, glass, paper and steel in manufacturing, packing goods
in transportation, arranging articles and advertisements in publishing. Var-
ious algorithms have been proposed to solve this problem. They can be
divided into three categories: approximate algorithms, heuristic algorithms
and exact algorithms [0 [14].

Most algorithms solve the RP problem by successively placing a new
rectangle into the container. Then a basic problem arises: where to place
a new rectangle when the container is already partially occupied by some
previously placed rectangles? To handle this problem, people have proposed
several kinds of placement heuristics which specifies admissible positions for
a rectangle [I1, 3] [5 111 [10].

However, for a specific placement heuristic, there exists an important
question: when there exist feasible solutions, can we achieve one by suc-
cessively placing a rectangle into the container using this placement heuris-
tic? If the answer is yes, then we say the placement heuristic is complete;
otherwise, incomplete. If a placement heuristic is incomplete, then any
algorithm based on it is foredoomed to fail on some instances. For example,
Baker et al. [I] have proved that the Bottom-Left heuristic, which places a
rectangle onto the lowest possible position in the container and left-justify
it, is incomplete. They found an instance for which any feasible solution can
not be achieved using the Bottom-Left heuristic, no matter what ordering
of the rectangles is used. Martello et al. [I5] proposed a placement heuris-
tic and developed an exact algorithm for the three dimensional bin packing
problem. Later, Boef et al. [4] found that some instances can not be solved
using the placement heuristic proposed by Martello et al. [15].

It is usually very difficult to prove a placement heuristic’s completeness
or incompleteness. Nevertheless, for a special case of the RP problem, the
2D rectangular perfect packing problem, Lesh et al. [I3] have shown that
the Bottom-Left heuristic is complete. They presented the following theo-
rem: For every perfect packing, there is a permutation of the rectangles that
yields that packing using the Bottom-Left heuristic. An efficient branch and
bound algorithm is also developed based on this theorem. Besides this re-
sult, we have not found other paper in literature proving a certain placement
heuristic’s completeness.

For the general IRP problem, this paper formulates a placement heuristic
and proves its completeness. The following corner occupying theorem is



Figure 1: Rectangles 2 and 3 are over rectangle 1

presented that if it is possible to orthogonally place n arbitrarily given
integral rectangles into an integral rectangular container without overlapping,
then we can achieve a feasible packing by successively placing an integral
rectangle onto a bottom-left corner in the container. This theorem lays a
solid foundation for understanding many efficient and exact algorithms for
solving the RP problem|[7, [8,12]. It might be possible to develop new efficient
and effective heuristic algorithms based on this theorem.

The rest of the paper is organized as follows. Section 2 presents several
notations and definitions. Section 3 proves the corner occupying theorem.
Finally, Section 4 presents a counterexample to show why the proof of corner
occupying theorem can not be directly extended to the three dimensional
case.

2. Notations and definitions in integral rectangle packing problem

We designate the bottom-left corner point of the container as the origin
of the xy-plane and let its four sides parallel to = and y axis, respectively.
The placement of rectangle i(i = 1,2,---,n) in the container can be de-
scribed by three variables (x;,y;v;), where z;,y; € N = {0,1,2,---} is the
coordinate of its bottom-left corner point, v; € {0,1} denotes its orienta-
tion. v; = 1 means it is vertically placed, v; = 0 horizontally. A pack-
ing pattern of n rectangles can be described by a vector of 3n elements:
X = (x1,y1,v1,%2,Y2,V2, "+, Tny Yn, Uy ). We give the following definitions.

Definition 1 (Feasible Packing). A feasible (or non-overlapping) pack-
ing X satisfies the following two conditions:

(1) Each rectangle does not overstep each border of the container.
(2) The overlapping area between any two rectangles is zero.

Definition 2 (Rectangle j Over Rectangle i). We say rectangle j is over
rectangle i (or rectangle 7 is under rectangle j) if and only if there exists a
positive number d such that if rectangle i moves upwards by a distance of
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Figure 2: Rectangles 2 and 3 are on the right of rectangle 1
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Figure 3: Bottom-left stability and bottom-left corners

d, then the overlapping area between rectangles ¢ and j is greater than zero.
See Fig[l] rectangles 2 and 3 are over rectangle 1, rectangles 4 and 5 are not
over rectangle 1. We say rectangle ¢ can move upwards freely if and only if
no rectangle is over rectangle .

Definition 3 (Rectangle j On the Right of Rectangle i). We say rect-
angle j is on the right of rectangle i (or rectangle i is on the left of rectangle
j) if and only if there exists a positive number d such that if rectangle 4
moves rightwards by a distance of d, then the overlapping area between
rectangles ¢ and j is greater than zero. See Figl2] rectangles 2 and 3 are on
the right of rectangle 1, rectangles 4 and 5 are not on the right of rectangle
1. We say rectangle i can move rightwards freely if and only if no rectangle
is on the right of rectangle 1.
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Figure 4: A feasible packing and its equivalent bottom-left stable packing

Definition 4 (Bottom-Left Stability). In a feasible packing, a rectangle
is bottom-left stable if and only if it can not move downwards or leftwards
without overlapping others [6]. A feasible packing is bottom-left stable if
and only if each rectangle in this packing is bottom-left stable. See Fig[3]
rectangles 1, 2, 3, 4 are bottom-left stable; rectangles 5, 6, 7, 8 are not
bottom-left stable.

Definition 5 (Bottom-Left Corner). A bottom-left corner is an unoc-
cupied area where a suitable rectangle has bottom-left stability. See Fig[3]
A, B, C, D, E, F, G are bottom-left corners.

Definition 6 (Corner Occupying Action). A corner occupying action
is an action that places a rectangle onto a bottom-left corner and makes
that rectangle bottom-left stable. Let the placed rectangle be rectangle i,
then the rectangles forming the bottom-left corner where rectangle i locates
satisfy the following two conditions: (1) they touch rectangle i; (2) they are
under or on the left of rectangle 1.

3. Corner Occupying Theorem

This section proves the corner occupying theorem. We first present two
lemmas.

Lemma 1. Any feasible packing can be replaced by another feasible packing
where each rectangle has bottom-left stability.

PROOF. See Figld] the left packing can be replaced by the right bottom-
left stable one. Given a feasible packing Xy, we prove that an equivalent
bottom-left stable packing can be found from Aj. Keep the orientation of



each rectangle unchanged, suppose that each rectangle can move freely and
consider the following function:

n—1 n
O:O(xlayhx%y%"'axnvyn) :Z Z Oij (1)
i=0 j=i+1
where O;;(i,j = 1,2,---,n) is the overlapping area between rectangles i
and j. Og;(j = 1,2,---,n) is the overlapping area between rectangle j

and the outside of the container. Let Sy be the set of all zero points of
O: SO = {(xlv Y1,T2,Y2, 5 Tn, yn)|0(x17 Y1,22,Y2, 5 T, yn) = 0} Then
each point in Sy corresponds to a non-overlapping packing. Because Xy cor-
responds to a zero point of O, Sy is not empty. And because each rectangle
can only be placed at integer coordinate positions, .Sy is a finite set.

Then let’s consider another function L defined on Sy:

N
L=7 (zi+uy) (2)
=1

Because S is a non-empty and finite set, there exists a point (27, y7, 23, y3, - - -

in Sp where L is minimal. Note that (z7,y], 23,95, -+, 2}, ys) corresponds
to a feasible packing where each rectangle can not move downwards or left-
wards without overlapping others; otherwise, we can find another point in
So with a smaller L, contradicting the fact that L attains its minimum at

* 0k k% * ok
(xlvyhx%yQa e ,$myn)- O

Lemma 1 has been explicitly mentioned by [7, 8, [I5] as a conjecture
and implicitly used by many algorithms for solving the rectangle packing
problem.

Lemma 2 (Escaping Lemma). In any feasible packing, if we take away
the four borders of the container, then there is a rectangle which can move
upwards and rightwards freely.

PROOF. See Fig(a), the highlighted rectangle can move upwards and right-
wards freely. Given a feasible packing with n rectangles, we sort the top-right
corner points of the rectangles lexicographically by increasing < x,y > and
renumber the rectangles according to this order (See Fig[5|(b)). We search
for the rectangle which can move rightwards and upwards freely as follows.
First, we consider the highest numbered rectangle among all n rectangles,

s T Yn)
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Figure 5: Examples for Lemma 2

i.e., rectangle n (12 in Fig(b)). Its top-right corner point is the rightmost,
thus it can move rightwards freely. If no rectangle is over rectangle n, then
n is the rectangle we want to find. Otherwise, we consider the highest num-
bered rectangle among all the rectangles over rectangle n. Let it be rectangle
i (10 in Fig(b)). Its top-right corner point is the rightmost among all the
rectangles over rectangle n. Therefore, it can move rightwards freely. If no
rectangle is over rectangle ¢, then 7 is the rectangle we want to find. Oth-
erwise we consider the highest numbered rectangle among all the rectangles
over rectangle ¢ and continue the search as described above.

Because there are only finite (n) rectangles, the above search will ter-
minate and we can finally find a rectangle which can move upwards and
rightwards freely. O

Theorem 1. For any feasible, bottom-left stable packing, there exists a
numbering of n rectangles such that rectangle i(i = 1,2,---,n) locates on
a bottom-left corner formed by rectangles 1,2,---,1— 1 and the four borders
of the container.

PROOF. According to Lemma 2, there is always a rectangle which can move
rightwards and upwards freely in any feasible packing. Consequently, for a
feasible packing with n rectangles, we can empty the container by succes-
sively taking out a rectangle which can move rightwards and upwards freely.
We then number the rectangles according to the order in which rectangles
are taken out. Under this numbering, a higher numbered rectangle is not
over or on the right of a lower numbered rectangle (See Fig[6|(a)).
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Figure 6: Examples for Theorem 1

Now we consider a new numbering which is the reversion of the previous
numbering, i.e., the number of rectangle i(i = 1,2,---,n) becomes n — i+ 1
(See Fig@(b)). Under this new numbering, a lower numbered rectangle is
not over or on the right of a higher numbered rectangle. Then, for rectangle
i(i =1,2,---,n), the labeled numbers of the rectangles forming the bottom-
left corner where rectangle i locates are smaller than 3.

The new numbering of the rectangles can be taken as an order in which
rectangles are placed into the container. Under this order, when we place
rectangle ¢ into the container, rectangles 1,2,---,¢ — 1 are already in the
container and rectangles ¢ + 1,7 4+ 2,---,n are not. Thus, it is shown that,
any feasible, bottom-left stable packing can be achieved through a sequence
of placement actions, among which the ith (i = 1,2,---,n) action is to place
rectangle ¢ onto a bottom-left corner formed by rectangles 1,2,---,i—1 and
the four borders of the container. That is to say, any feasible, bottom-
left stable packing can be achieved through a sequence of corner occupying
actions. [J

Theorem 2 (Corner Occupying Theorem). Arbitrarily given N rect-
angles and a rectangular container, if it is possible to orthogonally place
all the rectangles into the container without overlapping, then we can find a
feasible packing through a sequence of corner occupying actions.

PrOOF. According to Lemma 1, there exists a feasible packing where each
rectangle has bottom-left stability. Then according to Theorem 1, this
bottom-left stable packing can be found through a sequence of corner occu-
pying actions. [J

Note that, in the above proof, the escaping lemma determines the order
in which rectangles are placed into the container. And we can find that,



Table 1: Coordinate position of each rectangle in Fig[7]

Rectangle « vy 2z width depth height
1 2 0 0 1 2 1
2 0 1 1 3 1 1
3 0 0 2 1 2 1
4 1 0 0 1 1 3

when we place rectangle ¢ onto a bottom-left corner in the container, no
rectangle in the container is over or on the right of rectangle i. Therefore, in
practical implementation, in order to reduce the computing time, the corner
occupying theorem can be enhanced as : Arbitrarily given N rectangles and a
rectangular container, if it is possible to orthogonally place all the rectangles
into the container without overlapping, then we can find a feasible packing
by successively placing a rectangle onto a bottom-left corner in the container
where the placed rectangle is then under and on the left of no rectangle .

4. The Three-dimensional Case

In this section, we investigate the following problem: can the lemmas and
theorems presented in Section 3 be extended to the three-dimensional case?
Scientists have done some research for the three-dimensional case[4, [15].

In the three-dimensional case, rectangle j has width w;, height h; and
depth dj, and the container is of width W, height H and depth D. Similarly,
we can extend the notations and definitions presented in Section 2 to the
three-dimensional case, and get new definitions like: rectangle j in front
of rectangle i (or rectangle ¢ in behind of rectangle j), bottom-left-behind
corner, bottom-left-behind stability. And then the corner occupying action
is to place a rectangle onto a bottom-left-behind corner in the container.

We find that lemma 1 and its proof can be easily extended to the three-
dimensional case. However, the escaping lemma is wrong in the three-
dimensional case. Fig[7] presents a counterexample where no rectangle can
move along the positive x-axies, positive y-axies, and positive z-axies freely.
The coordinate position of each rectangle in Fig[7]is presented in Table [I}

As shown in Section 3, in the two-dimensional case, the proof of the
corner occupying theorem is based on lemma 1 and the escaping lemma.
Since the escaping lemma is wrong in the three-dimensional case, we can
not directly extend the proof of the corner occupying theorem to the three-



Figure 7: A counterexample of escaping lemma in the three-dimensional case

dimensional case. However, the incorrectness of escaping lemma in the three-
dimensional case might not imply that the corner occupying theorem is
incorrect in the three-dimensional case. Therefore, we get an open problem:
is the corner occupying theorem correct in the three-dimensional case? Or
specifically,

In the three-dimensional case, if it is possible to orthogonally place n
arbitrarily given rectangles into a rectangular container without overlapping,
can we achieve a feasible packing by successively placing a rectangle onto a
bottom-left-behind corner in the container?
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