Skip to main content
Log in

Forced-convergence decoding for LDPC-coded modulation

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Low-density parity-check (LDPC)-coded modulation has attracted much attention for its outstanding performance in a bandwidth-limited channel. However, it involves relatively high decoding complexity. Owing to different convergence behaviors of variable nodes, the nodes detected early can be deleted from the Tanner graph, which reduces the size of the parity-check matrix iteration by iteration and thus the decoding complexity. In this paper, we propose a new decoding algorithm for LDPC-coded modulation with reduced complexity. In addition, by deleting the converged bits from the modulation constellation and updating the bit metrics of the demapper with the reduced constellation, more accurate estimation of the bits can be achieved. Simulation results show that, compared with conventional decoding schemes, the proposed method not only greatly reduces the overall decoding complexity for LDPC-coded modulation but also significantly improves decoding performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gallager R G. Low-density parity-check code. IRE Trans Inf Theory, 1962, IT-8: 21–28

    Article  MathSciNet  MATH  Google Scholar 

  2. MacKay D J C, Neal R M, Near Shannon limit performance of low density parity check codes. Electron Lett, 1996, 32: 1645–1646

    Article  Google Scholar 

  3. Caire G, Taricco G, Biglieri E. Bit-interleaved coded modulation. IEEE Trans Inf Theory, 1998, 44: 927–946

    Article  MathSciNet  MATH  Google Scholar 

  4. Li X D, Chindapol A, Ritcey J A. Bit-interleaved coded modulation with iterative decoding and 8PSK signaling. IEEE Trans Commun, 2002, 50: 1250–1257

    Article  Google Scholar 

  5. Brink S, Kramer G, Ashikhmin A. Design of low-density parity-check codes for modulation and detection. IEEE Trans Commun, 2004, 52: 670–678

    Article  Google Scholar 

  6. Li Y, Ryan W E. Bit-reliability mapping in LDPC-coded modulation systems. IEEE Commun Lett, 2005, 9: 1–3

    Article  Google Scholar 

  7. Hou J, Siegel P, Milstein L, et al. Capacity-approaching bandwidth-efficient coded modulation schemes based on low-density parity-check codes. IEEE Trans Inf Theory, 2003, 49: 2141–2155

    Article  MathSciNet  Google Scholar 

  8. Hou J, Yi Y, Lee M H. Multilevel LDPC codes design for multimedia communication CDMA system. EURASIP J Wirel Commun Netw, 2004, 1: 141–148

    Google Scholar 

  9. Ghaffar R, Knopp R. Reduced complexity soft detection for BICM MIMO OFDM system. In: 2nd International Conference on Computer, Control and Communication(IC4 2009), Karachi, 2009

  10. Chen J, Dholakia A, Eleftheriou E, et al. Reduced complexity iterative decoding of LDPC codes. IEEE Trans Commun, 2005, 53: 1288–1299

    Article  Google Scholar 

  11. Jiang X B, Nie Z H. Low computational complexity algorithms of LDPC decoder for CMMB. Chin J Electron, 2010, 38: 1612–1615

    Google Scholar 

  12. Shin D, Yang P H, Heo K, et al. A stopping criterion for low-density parity-check codes. IEICE Trans Commun, 2008, E91-B: 1145–1148

    Article  Google Scholar 

  13. Lin C Y, Ku M K. Early detection of successful decoding for dual-diagonal block-based LDPC codes. IEEE Electron Lett, 2008, 44: 1368–1370

    Article  Google Scholar 

  14. Zimmermann E, Ha J, Pattisapu P, et al. Reduced complexity LDPC decoding using forced convergence. In: 7th International Symposium on Wireless Personal Multimedia Communication, Abano Terme, 2004

  15. Zimmermann E, Rave W, Fettweis G K. Forced convergence decoding of LDPC codes-EXIT chart analysis and combination with node complexity reduction techniques. In: 11th European Wireless Conference(EW’05), Nicosia, 2005

  16. Aoyama R, Kaji Y. Improvement of the forced-convergence decoding for LDPC codes. In: International Symposium on Information Theory and Its Applications(ISITA 2008), Auckland, 2008

  17. Hironori U, Kohsuke H. Complexity-reducing algorithm for serial scheduled min-sum decoding of LDPC codes. IEICE Trans Commun, 2009, E92-A: 2411–2417

    Article  Google Scholar 

  18. Fan J X, Yang H W. A new forced convergence decoding scheme for LDPC codes. In: IEEE International Conference on Communications Technology and Applications (ICCTA), Beijing, 2009

  19. Tanner R M. A recursive approach to low complexity codes. IEEE Trans Inf Theory, 1981, 27: 533–547

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu X Y, Eleftheriou E, Arnold D M, et al. Efficient implementations of the sum-product algorithm for decoding LDPC codes. In: IEEE Globle Communications Conference (GlobleCom 2001), San Antonio, 2001

  21. Fossorier M P C, Mihaljevic M, Imai H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Trans Commun, 1999, 47: 673–680

    Article  Google Scholar 

  22. Chen J H, Fossorier M P C. Near optimum universal belief propagation based decoding of low-density parity-check codes. IEEE Trans Commun, 2002, 50: 406–414

    Article  Google Scholar 

  23. Chen J H, Fossorier M P C. Density evolution for two improved BP-based decoding algorithms of LDPC codes. IEEE Commun Lett, 2002, 6: 208–210

    Article  Google Scholar 

  24. Zhang J T, Fossorier M P C. Shuffled iterative decoding. IEEE Trans Commun, 2005, 53: 209–213

    Article  Google Scholar 

  25. Chang Y M, Vila Casado A I, Chang M C F, et al. Lower-complexity layered belief-propagation decoding of LDPC codes. In: IEEE International Conference on Communications(ICC 2008), Beijing, 2008

  26. Huang J, Zhang L J. Relative-residual-based dynamic schedule for belief propagation decoding of LDPC codes. China Commun, 2011, 8: 47–53

    Google Scholar 

  27. Fagervik K, Jeans T G. Low complexity bit by bit soft output demodulator. IEEE Electron Lett, 1996, 32: 985–987

    Article  Google Scholar 

  28. Wang M M, Xiao W M, Brown T. Soft decision metric generation for QAM with channel estimation error. IEEE Trans Commun, 2002, 50: 1058–1061

    Article  Google Scholar 

  29. Lin D S, Xiao Y, Li S Q. Low complexity soft decision technique for gray mapping modulation. Wirel Pers Commun, 2010, 52: 383–392

    Article  Google Scholar 

  30. Zou X L, Liu W Y, Feng G Z. Performance of iteratively decoded bit-interleaved coded modulation with chaos based interleaving strategies. Sci China Inf Sci, 2010, 53: 833–841

    Article  Google Scholar 

  31. Tran N H, Nguyen H H, Le-Ngoc T. Performance analysis and design criteria of BICM-ID with signal space diversity for keyhole Nakagami-m fading channels. IEEE Trans Inf Theory, 2009, 55: 1592–1602

    Article  MathSciNet  Google Scholar 

  32. IEEE Std 802:16TM-2004. IEEE standard for local and metropolitan area networks part 16: air interface for fixed broadband wireless access system, 2004

  33. Dai L Y, Yang H W, Chen X G. Estimation error rate based on the radius of decision region (in Chinese). J Beijing Univ Posts Telecommun, 2011, 5: 66–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LiYun Dai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, L., Yang, H., Fan, J. et al. Forced-convergence decoding for LDPC-coded modulation. Sci. China Inf. Sci. 56, 1–11 (2013). https://doi.org/10.1007/s11432-012-4710-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4710-8

Keywords

Navigation