Skip to main content
Log in

A high quality image reconstruction method based on nonconvex decoding

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The article proposes a fast reconstruction algorithm for 0⩽p⩽1 norm nonconvex model, called Gradient projection nonconvex sparse recovery (GPNSR), which makes a good performance in high-quality image reconstruction. We apply the GPNSR into canonical multiple description coding theory and propose a robust high-quality compressed sensing-based coding method. Combined with iterative weighted technique and fast gradient descent method, the proposed method implicitly implements matrix inverse operations to highly reduce the storage pressure. Also the weighted norm method is taken to optimize the descent steps, which highly increases convergent speed of the algorithm. Taking an image has sparse Fourier representations as an example, the paper presents the detailed image sparse coding and fast reconstruction procedure. By integrating the compressive sensing multi-description coding framework, the simulation demonstrates the superior reconstruction performance of the proposed algorithm. Most importantly, with p close to zero, the reconstruction performance of GPNSR can approximate that of 0 norm optimization result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Candès E J. Compressive sampling. In: Proceedings of International Congress of Mathematics. 2006. 1433–1452

    Google Scholar 

  2. Candès E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inform Theory, 2006, 52: 489–509

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès E J, Romberg J. Quantitative robust uncertainty principles and optimally sparse decompositions. Found Comput Math, 2006, 6: 227–254

    Article  MathSciNet  MATH  Google Scholar 

  4. Donoho D L. Compressed sensing. IEEE Trans Inform Theory, 2006, 52: 1289–1306

    Article  MathSciNet  Google Scholar 

  5. Candès E J, Romberg J. Practical signal recovery from random projections. Wavelet Appl Sig Image Proc XI, 2005, 5914: 1029228

    Google Scholar 

  6. Donoho D L, Tsaig Y. Extensions of compressed sensing. Signal Process, 2006, 86: 533–548

    Article  MATH  Google Scholar 

  7. Goyal V K. Multiple description coding: compression meets the network. IEEE Signal Proc Mag, 2001, 18: 74–93

    Article  Google Scholar 

  8. Carrillo R E, Barner K E, Aysal T C. Robust sampling and reconstruction methods for sparse signals in the presence of impulsive noise. IEEE J Sel Topic Signal Proc, 2010, 4: 132–408

    Google Scholar 

  9. Shi G M, Chen X Y, Song X X, et al. Signal matching wavelet for ultrasonic flaw detection in high background noise. IEEE Trans Ultrason Ferr, 2011, 58: 776–787

    Article  Google Scholar 

  10. Marcia R F, Willett R M, Harmany Z T. Compressive optical imaging: architectures and algorithms. In: Optical and Digital Image Processing: Fundamentals and Applications. 2011

    Google Scholar 

  11. Suzen M, Giannoula A, Durduran T. Compressed sensing in diffuse optical tomograph. Opt Express, 2010, 18: 23676–23690

    Article  Google Scholar 

  12. Lustig M, Donoho D, Pauly J M. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med, 2007, 58: 1182–1195

    Article  Google Scholar 

  13. Chartrand R. Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data. In: IEEE International Symposium on Biomedical Imaging (ISBI). 2009. 262–265

    Google Scholar 

  14. Herman M, Strohmer T. High-resolution radar via compressed sensing. IEEE Trans Signal Process, 2009, 57: 2275–2284

    Article  MathSciNet  Google Scholar 

  15. Easley P V M, Healy G R, Chellappa D M R. Compressed synthetic aperture radar. IEEE J Sel Top Signal Proc, 2010, 4: 244–254

    Article  Google Scholar 

  16. Tibshirani R. Regression shrinkage and selection via the lasso. J Roy Stat Soc B, 1996, 58: 267–288

    MathSciNet  MATH  Google Scholar 

  17. Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit. SIAM J Sci Comput, 1998, 20: 33–61

    Article  MathSciNet  Google Scholar 

  18. Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compresed sensing and other inverse problems. IEEE J Sel Top Signal Proc, 2007, 1: 586–597

    Article  Google Scholar 

  19. Candes E, Wakin M, Boyd S. Enhancing sparsity by reweighted l1 minimizaion. J Fourier Anal Appl, 2008, 14: 877–905

    Article  MathSciNet  MATH  Google Scholar 

  20. Chartrand R, Yin W. Iteratively reweighted algorithms for compressive sensing. In: Proceedings of International Conference on Accoustics, Speech, and Signal Processing. 2008. 3869–3872

    Google Scholar 

  21. Chartrand R. Exact reconstruction of sparse signal via nonconvex minimization. IEEE Signal Proc Lett, 2007, 14: 707–710

    Article  Google Scholar 

  22. Rao B D, Kreutz-Delgado K. An affine scaling methodology for best basis selection. IEEE Trans Signal Process, 1999, 47: 187–200

    Article  MathSciNet  MATH  Google Scholar 

  23. Rao B D, Engan K, Cotter S F, et al. Subset selection in noise based on diversity measure minimization. IEEE Trans Signal Process, 2003, 51: 760–770

    Article  Google Scholar 

  24. Gorodntisky I F, Rao B D. Sparse singal reconstruction from limited data using FOUSS: a reweighted minimim norm algorithm. IEEE Trans Signal Process, 1997, 45: 600–616

    Article  Google Scholar 

  25. Hager W W, Park S. The gradient projection method with exact line search. J Global Optim, 2004, 30: 103–118

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu D H, Shi G M, Zhou J S, et al. New metod of multiple description coding for image based on compressed sensing. J Infrared Millim Wave, 2009, 28: 298–302

    Article  Google Scholar 

  27. Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. IEEE Trans Inform Theory, 2012, 58: 1094–1121

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuangHui Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, G., Shen, F., Wang, Z. et al. A high quality image reconstruction method based on nonconvex decoding. Sci. China Inf. Sci. 56, 1–10 (2013). https://doi.org/10.1007/s11432-012-4712-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4712-6

Keywords

Navigation