Skip to main content
Log in

Modeling and analysis of nano-sized GMRs based on Co, NiFe and Ni materials

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Magnetic simulation method is introduced to analyze giant magnetoresistances (GMRs) in nanoscale for nano-sized biosensors. A spin valve model with special gridding corresponding to the exchange interaction length is proposed to study the influence of easy axes, exchange coefficients, pinning fields and feature widths on magnetization reversals and hysteresis characteristics of nano-sized GMRs with different pinned layer and free layer materials of Co, NiFe and Ni. The switching field is found to be almost linear with the pinning field and decrease with the absolute exchange coefficients and the feature widths for the nano-sized GMRs. The increase rate of each depends on the spin valve stacks. Further investigations into variations of the magnetization distribution reveal that the initial magnetization distribution and the magnetization reversal mode depend greatly on easy axes and materials The dependence on easy axes based mainly on the magnetocrystalline anisotropy is illustrated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baibich M N, Broto J M, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattice. Phys Rev Lett, 1988, 61: 2472–2475

    Article  Google Scholar 

  2. Banerjee N, Aziz A, Ali M, et al. Thickness dependence and the role of spin transfer torque in nonlinear giant magnetoresistance of permalloy dual spin valves. Phys Rev B, 2010, 82: 224402

    Article  Google Scholar 

  3. Elsafi B, Trigui F, Fakhfakh Z. Effects of bulk and interface scattering on giant magnetoresistance in the Co/Cu multilayer systems. Comput Mater Sci, 2010, 50: 800–804

    Article  Google Scholar 

  4. Wang L, Wang S G, Rizwan S, et al. Magnetoresistance effect in antiferromagnet/nonmagnet/antiferromagnet multilayers. Appl Phys Lett, 2009, 95: 152512

    Article  Google Scholar 

  5. Chen L, Yan S, Xu P F, et al. Easy axis reorientation and magneto-crystalline anisotropic resistance of tensile strained (Ga,Mn) as films. J Magn Magn Mater, 2010, 322: 3250–3254

    Article  Google Scholar 

  6. Urbaniak M. Giant magnetoresistance as a probe of magnetostatic coupling in NiFe/Au/Co/Au multilayers. J Appl Phys, 2008, 104: 094909

    Article  Google Scholar 

  7. Yamagishi Y, Honda S, Inoue J. Numerical simulation of giant magnetoresistance in magnetic multilayers and granular films. Phys Rev B, 2010, 81: 054445

    Article  Google Scholar 

  8. Mascaro MD, Körner H S, Nam C, et al. 360° domain wall mediated reversal in rhombic Co/Cu/NiFe magnetic rings. Appl Phys Lett, 2011, 98: 252506

    Article  Google Scholar 

  9. Zhang G F. Nano-sized magnetic study of magnetic characters of antiferromagnetically exchange coupled magnetic bilayer & trilayers. Dissertation for the Master Degree. Changsha: Central South University, 2008. 10–17

    Google Scholar 

  10. Zhai Y. Studies of magnetic properties on unpatterned and patterned magnetic thin and ultrathin films. Dissertation for the Doctoral Degree. Nanjing: Southeast University, 2003. 77–90

    Google Scholar 

  11. Liu H R. Study on spin valve structure and GMR sensor. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2006. 79–100

    Google Scholar 

  12. Wang S X, Li G. Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: Review and outlook. IEEE Trans Magn, 2008, 44: 1687–1702

    Article  Google Scholar 

  13. Baselt D R, Lee G U, Natesan M, et al. A biosensor based on magnetoresistance technology. Biosens Bioelectron, 1998, 13: 731–739

    Article  Google Scholar 

  14. Kasatkin S I, Vasil’eva N P, Murav’ev A M. Biosensors based on the thin-film magnetoresistance sensors. Autom Remote Control, 2010, 71: 156–166

    Article  MATH  MathSciNet  Google Scholar 

  15. Wood D K, Ni K K, Schmidt D R, et al. Submicron giant magnetoresistive sensors for biological applications. Sens Actuator A-Phys, 2005, 120: 1–6

    Article  Google Scholar 

  16. Jedlicska I, Weiss R, Weigel R. Linearizing the output characteristic of GMR current sensors through hysteresis modeling. IEEE Trans Ind Electron, 2010, 57: 1728–1734

    Article  Google Scholar 

  17. Roldán A, Reig C, Cubells-beltrán M D, et al. Analytical compact modeling of GMR based current sensors: Application to power measurement at the IC level. Solid-State Electron, 2010, 54: 1606–1612

    Article  Google Scholar 

  18. Cubells-beltrán M D, Reig C, Muñoz D R, et al. Full wheatstone bridge spin-valve based sensors for IC currents monitoring. IEEE Sens J, 2009, 9: 1756–1762

    Article  Google Scholar 

  19. Lenssen K M H, Adelerhof D J, Gassen H J, et al. Robust giant magnetoresistance sensors. Sens Actuator A-Phys, 2000, 85: 1–8

    Article  Google Scholar 

  20. Treutler C P O. Magnetic sensors for automotive applications. Sens Actuator A-Phys, 2001, 91: 2–6

    Article  Google Scholar 

  21. Rieger G, Ludwig K, Hauch J, et al. GMR sensors for contactless position detection. Sens Actuator A-Phys, 2001, 91: 7–11

    Article  Google Scholar 

  22. Wang G A, Nakashima S, Arai S, et al. High sensitivity giant magnetoresistance magnetic sensor using oscillatory domain wall displacement. J Appl Phys, 2010, 107: 09E709

    Google Scholar 

  23. Childress J R, Carey M J, Cyrille M, et al. Fabrication and recording study of all-metal dual-spin-valve CPP read heads. IEEE Trans Magn, 2006, 42: 2444–2446

    Article  Google Scholar 

  24. Shimazawa K, Tsuchiya Y, Mizuno T, et al. CPP-GMR film with ZnO-based novel spacer for future high-density. IEEE Trans Magn, 2010, 46: 1487–1490

    Article  Google Scholar 

  25. Heim D E, Fontana R E, Tsang C, et al. Design and operation of spin valve sensors. IEEE Trans Magn, 1994, 30: 316–321

    Article  Google Scholar 

  26. Zhou Y, Stickler D, Du Y, et al. Size effect on magnetic switching and interlayer magnetostatic coupling in spin-valve nanorings exchange-biased by synthetic antiferromagnets. IEEE Trans Magn, 2011, 47: 214–220

    Article  Google Scholar 

  27. Li G X, Sun S H, Wilson R J, et al. Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications. Sens Actuator A-Phys, 2006, 126: 98–106

    Article  Google Scholar 

  28. Billoni O V, Cannas S A, Tamarit F A. The exchange bias phenomenon in uncompensated interfaces: theory and Monte Carlo simulations. J Phys Condens Matter 2011, 23: 386004

    Article  Google Scholar 

  29. Engel-Herbert R, Hesjedal T. Micromagnetic analysis of unusual, V-shaped domain transitions in MnAs nanowires. J Magn Magn Mater, 2011, 323: 1840–1845

    Article  Google Scholar 

  30. Carpentieri M, Torres L. Micromagnetic simulations of linewidths and nonlinear frequency shift coefficient in spin torque nano-oscillators. J Appl Phys, 2010, 107: 073907

    Article  Google Scholar 

  31. Kim S. Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements. J Phys D-Appl Phys, 2010, 43: 264004

    Article  Google Scholar 

  32. OOMMF User’s guide. http://math.nist.gov/oommf/, 2002

  33. Landau L D, Lifshitz E M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjetunion, 1935, 8: 153–169

    MATH  Google Scholar 

  34. Yin C, Jia Z, Ma W C, et al. Simulations of interaction among GMRs in a nano-sized biosensor array. Tsinghua Sci Technol, 2011, 16: 151–156

    Article  Google Scholar 

  35. Silva R A, Machado T S, Cernicchiaro G, et al. Magnetoresistance and magnetization reversal of single Co nanowires. Phys Rev B, 2009, 79: 134434

    Article  Google Scholar 

  36. Liao Z M, Lu Y, Zhang H Z, et al. Hysteresis magnetoresistance and nano-sized magnetic modeling of Ni microbelts. J Magn Magn Mater, 2010, 322: 2231–2234

    Article  Google Scholar 

  37. Bai R, Qian Z H, Sun Y C. Fabrication and analysis of PM-biased spin-valve sensors. J Phys Conf Ser, 2011, 263: 012005

    Article  Google Scholar 

  38. Morecroft D, Van Aken B B, Prieto J L, et al. In situ magnetoresistance measurements during nanopatterning of pseudo-spin-valve structures. J Appl Phys, 2005, 97: 054302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ze Jia or TianLing Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, C., Jia, Z., Ma, W. et al. Modeling and analysis of nano-sized GMRs based on Co, NiFe and Ni materials. Sci. China Inf. Sci. 57, 1–14 (2014). https://doi.org/10.1007/s11432-012-4759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4759-4

Keywords

Navigation