Skip to main content
Log in

Efficient polygonization of tree trunks modeled by convolution surfaces

  • Research Paper
  • Special Focus
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We present an efficient polygonization approach for tree trunks modeled by line skeleton-based convolution surfaces. A quad-dominated non-convex bounding polyhedron is firstly created along the skeleton, which is then tetrahedralized and subdivided into the pre-defined resolution. After that, the iso-surface within each tetrahedron is extracted using marching tetrahedra. Our algorithm can generate polygons with adaptive edge lengths according to the thickness of the trunk. In addition, we present an efficient CUDA-based parallel algorithm utilizing the high parallelism of the tetrahedron subdivision, the potential field calculation, and the iso-surface extraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deussen O, Lintermann B. Digital Design of Nature: Computer Generated Plants and Organs. New York: Springer, 2005

    Google Scholar 

  2. Okabe M, Owada S, Igarashi T. Interactive design of botanical trees using freehand sketches and example-based editing. Comput Graph Forum, 2005, 24: 487–496

    Article  Google Scholar 

  3. Neubert B, Franken T, Deussen O. Approximate image-based tree-modeling using particle flows. ACM Trans Graph, 2007, 26: 88

    Article  Google Scholar 

  4. Livny Y, Pirk S, Cheng Z L, et al. Texture-lobes for tree modelling. ACM Trans Graph, 2011, 30: 53

    Article  Google Scholar 

  5. Livny Y, Yan F L, Chen B Q, et al. Automatic reconstruction of tree skeletal structures from point clouds. ACM Trans Graph, 2010, 29: 151

    Article  Google Scholar 

  6. Xu H, Gossett N, Chen B Q. Knowledge and heuristic-based modeling of laser-scanned trees. ACM Trans Graph, 2007, 26: 19

    Article  Google Scholar 

  7. Lindenmayer A. Mathematical models for cellular interactions in development II. Simple and branching filaments with two-sided inputs. J Theor Biol, 1968, 18: 300–315

    Article  Google Scholar 

  8. Talton J O, Lou Y, Lesser S, et al. Metropolis procedural modeling. ACM Trans Graph, 2011, 30: 11

    Article  Google Scholar 

  9. Anastacio F, Sousa M C, Samavati F, et al. Modeling plant structures using concept sketches. In: Proceedings of 4th International Symposium of Nonphotorealistic Animation and Rendering. New York: ACM, 2006. 105–113

    Chapter  Google Scholar 

  10. Chen X J, Neubert B, Xu Y Q, et al. Sketch-based tree modeling using markov random field. ACM Trans Graph, 2008, 27: 109

    Google Scholar 

  11. Palubicki W, Horel K, Longay S, et al. Self-organizing tree models for image synthesis. In: Proceedings of ACM SIGGRAPH. New York: ACM, 2009. 1–10

    Google Scholar 

  12. Reche-Martinez A, Martin I, Drettakis G. Volumetric reconstruction and interactive rendering of trees from photographs. ACM Trans Graph, 2004, 23: 720–727

    Article  Google Scholar 

  13. Tan P, Fang T, Xiao J X, et al. Single image tree modeling. ACM Trans Graph, 2008, 27: 108

    Article  Google Scholar 

  14. Tan P, Zeng G, Wang J D, et al. Image-based tree modeling. ACM Trans Graph, 2007, 26: 87

    Article  Google Scholar 

  15. Bucksch A, Lindenbergh R. Campino-a skeletonization method for point cloud processing. ISPRS-J Photogramm Remote Sens, 2008, 63: 115–127

    Article  Google Scholar 

  16. Bucksch A, Lindenbergh R, Menenti M. Skeltre-fast skeletonization for impefect point cloud data of botanic trees. In: Proceedings of the 2nd Eurographics conference on 3D Object Retrieval. Switzerland: Eurographics Association Aire-la-Ville, 2009. 13–27

    Google Scholar 

  17. Au O K C, Tai C L, Chu H K, et al. Skeleton extraction by mesh contraction. In: Proceedings of ACM SIGGRAPH. New York: ACM, 2008. 44

    Google Scholar 

  18. Cao J J, Tagliasacchi A, Olson M, et al. Point cloud skeletons via laplacian-based contraction. In: Proceedings of IEEE Conference on Shape Modeling and Applications. Washington DC: IEEE Computer Society, 2010. 187–197

    Google Scholar 

  19. Ma W, Xiang B, Zha H B, et al. Modeling plants with sensor data. Sci China Ser F-Inf Sci, 2009, 52: 500–511

    Article  MATH  Google Scholar 

  20. Bloomenthal J, Shoemake K. Convolution surfaces. Comput Graph, 1991, 25: 251–256

    Article  Google Scholar 

  21. Pan R J, Meng X X, Whangbo T K. Hermite variational implicit surface reconstruction. Sci China Ser F-Inf Sci, 2009, 52: 308–315

    Article  MATH  Google Scholar 

  22. Sherstyuk A. Kernel functions in convolution surfaces: a comparative analysis. Visual Comput, 1999, 15: 171–182

    Article  MATH  Google Scholar 

  23. Zhu X Q, Jin X G, Liu S J, et al. Analytical solutions for sketch-based convolution surface modeling on the GPU. Visual Comput, 2012, 28: 1115–1125

    Article  Google Scholar 

  24. Alexe A, Barthe L, Cani M P. Adaptive implicit modeling using subdivision curves and surfaces as skeletons. In: Proceedings of the 7th ACM Symposium on Solid Modeling and Applications. New York: ACM, 2002. 45–52

    Google Scholar 

  25. Hubert E. Convolution surfaces based on polygons for infinite and compact support kernels. Graph Models, 2012, 74: 1–13

    Article  Google Scholar 

  26. Jin X G, Tai C L. Analytical methods for polynomial weighted convolution surfaces with various kernels. Comput Graph, 2002, 26: 437–447

    Article  Google Scholar 

  27. Jin X G, Tai C L. Convolution surfaces for arcs and quadratic curves with a varying kernel. Visual Comput, 2002, 18: 530–546

    Article  Google Scholar 

  28. Jin X G, Tai C L, Feng J Q, et al. An analytical convolution surface model for line skeletons with polynomial weighted distributions. J Graph Tools, 2001, 6: 1–12

    Article  Google Scholar 

  29. Jin X G, Tai C L, Zhang H L. Implicit modeling from polygon soup using convolution. Visual Comput, 2009, 25: 279–288

    Article  Google Scholar 

  30. Lorensen W, Cline H. Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph, 1987, 21: 163–169

    Article  Google Scholar 

  31. Gueziec A, Hummel R. Exploiting triangulated surface extraction using tetrahedral decomposition. IEEE Trans Vis Comput Graph, 1995, 1: 328–342

    Article  Google Scholar 

  32. Payne B A, Toga A W. Surface mapping brain function on 3D models. IEEE Comput Graph Appl, 1990, 10: 33–41

    Article  Google Scholar 

  33. Schaefer S, Warren J. Dual marching cubes: primal contouring of dual grids. In: Proceedings of the 12th Pacific Conference on Computer Graphics and Applications. Washington DC: IEEE Computer Society, 2004. 70–76

    Google Scholar 

  34. Poston T, Wong T T, Heng P. Multiresolution isosurface extraction with adaptive skeleton climbing. Comput Graph Forum, 1998, 17: 137–148

    Article  Google Scholar 

  35. Kazhdan M, Klein A, Dalal K, et al. Unconstrained isosurface extraction on arbitrary octrees. In: Proceedings of 5th Eurographics Symposium on Geometry Processing. Switzerland: Eurographics Association, 2007. 125–133

    Google Scholar 

  36. Ji Z P, Liu L G, Wang Y G. B-mesh: a modeling system for base meshes of 3D articulated shapes. Comput Graph Forum, 2010, 29: 2169–2178

    Article  Google Scholar 

  37. Tai C L, Zhang H X, Fong C K. Prototype modeling from sketched silhouettes based on convolution surfaces. Comput Graph Forum, 2004, 23: 71–83

    Article  Google Scholar 

  38. Kravtsov D, Fryazinov O, Adzhiev V, et al. Embedded implicit stand-ins for animated meshes: a case of hybrid modeling. Comput Graph Forum, 2010, 29: 128–140

    Article  Google Scholar 

  39. Wang M, Feng J Q. 2D-manifold boundary surfaces extraction from heterogeneous object on GPU. J Comput Sci Technol, 2012, 27: 862–871

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoGang Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, X., Guo, X. & Jin, X. Efficient polygonization of tree trunks modeled by convolution surfaces. Sci. China Inf. Sci. 56, 1–12 (2013). https://doi.org/10.1007/s11432-013-4790-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4790-0

Keywords

Navigation