Skip to main content
Log in

An extended packetization-aware mapping algorithm for scalable video coding in finite-length fountain codes

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

We propose an extended packetization-aware mapping algorithm based on fountain codes to enhance video stream performance which is vulnerable to packet losses. By properly utilizing the proposed algorithm in finite-length cases, the edges connecting to a source symbol are scattered over multiple encoding packets so that the decoding probabilities are increased. Furthermore, an improved degree distribution is designed to obtain better decoding probabilities. Numerical results, it is confirmed that the proposed algorithm in finite-length cases can augment decoding probabilities and the improved degree distribution can increase peak signal-to-noise ratio (PSNR) of scalable video coding (SVC) in a hostile communication environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu F W, van der Schaar M. Noncollaborative resource management for wireless multimedia applications using mechanism design. IEEE Trans Multimedia, 2007, 9: 851–868

    Article  Google Scholar 

  2. Van der Schaar M, Turaga D S. Cross-layer packetization and retransmission strategies for delay-sensitive wireless multimedia transmission. IEEE Trans Multimedia, 2004, 9: 185–197

    Article  Google Scholar 

  3. Etemad K, Wang L M. Multicast and broadcast multimedia services in mobile WiMAX networks. IEEE Commun Mag, 2009, 47: 84–91

    Article  Google Scholar 

  4. Luby M, Gasiba T, Stockhammer T, et al. Reliable multimedia download delivery in cellular broadcast networks. IEEE Trans Broadcast, 2007, 53: 235–246

    Article  Google Scholar 

  5. Lai Y C, Lin P, Fang Y G, et al. Channel allocation for UMTS multimedia broadcasting and multicasting. IEEE Trans Wirel Commun, 2008, 7: 4375–4383

    Article  Google Scholar 

  6. Weng J F, Chen J C. Dynamic rekeying in 3GPP multimedia broadcast/multicast service (MBMS). IEEE Commun Lett, 2010, 14: 288–290

    Article  Google Scholar 

  7. Guo X, Ji X D, Peng M G, et al. A novel virtual hybrid ARQ mechanism for multi-cell MBMS transmission in wireless network. In: IEEE International Conference on Communications Technology and Applications, Beijing, 2009. 702–706

    Google Scholar 

  8. Wang H, Ding B, Wang X B, et al. Admission control scheme for MBMS in heterogeneous wireless networks. In: International Symposium on Intelligent Signal Processing and Communication Systems, Chengdu, 2010. 1–4

    Google Scholar 

  9. Schwarz H, Marpe D, Wiegand T. Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Trans Circuits Syst Video Technol, 2007, 17: 1103–1120

    Article  Google Scholar 

  10. Francois E, Viron J, Bottreau V. Interlaced coding in SVC. IEEE Trans Circuits Syst Video Technol, 2007, 17: 1136–1148

    Article  Google Scholar 

  11. Lee K D, Kim S G, Yi B K. Packet-level scheduling for implant communications using forward error correction in an erasure correction mode for reliable u-healthcare service. J Commun Netw, 2011, 13: 160–166

    Google Scholar 

  12. Chang Y C, Lee S W, Komyia R. A fast forward error correction allocation algorithm for unequal error protection of video transmission over wireless channels. IEEE Trans Consum Electron, 2008, 54: 1066–1073

    Article  Google Scholar 

  13. Luby M. LT codes. In: IEEE Symposium on Foundations of Computer Science, Vancouver, 2002. 271–280

    Google Scholar 

  14. Shokrollahi A. Raptor codes. IEEE Trans Inf Theory, 2006, 52: 2551–2567

    Article  MathSciNet  Google Scholar 

  15. Talari A, Rahnavard N. Rateless codes with optimum intermediate performance. In: IEEE Global Telecommunications Conference, Honolulu, 2009. 1–6

    Google Scholar 

  16. Sanghavi S. Intermediate performance of rateless codes. In: IEEE Information Theory Workshop, Tahoe City, 2007. 478–482

    Google Scholar 

  17. Han S C, Joo H, Lee D, et al. An end-to-end virtual path construction system for stable live video streaming over heterogeneous wireless networks. IEEE J Sel Areas Commun, 2011, 29: 1032–1041

    Article  Google Scholar 

  18. Luby M G, Mitzenmacher M, Shokrollahi M A. Analysis of random processes via And-Or tree evaluation. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia: Society for Industrial and Applied Mathematics, 1998. 364–373

    Google Scholar 

  19. Rahnavard N, Fekri F. Generalization of rateless codes for unequal error protection and recovery time: asymptotic analysis. In: IEEE International Symposium on Information Theory (ISIT), Seattle, 2006. 523–527

    Google Scholar 

  20. Sejdinovic D, Piechocki R J, Doufexi A. And-Or tree analysis of distributed LT codes. In: IEEE Information Theory Workshop on Networking and Information Theory, Volos, 2009. 261–265

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZeSong Fei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, C., Fei, Z., Xiao, M. et al. An extended packetization-aware mapping algorithm for scalable video coding in finite-length fountain codes. Sci. China Inf. Sci. 56, 1–10 (2013). https://doi.org/10.1007/s11432-013-4809-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-013-4809-6

Keywords

Navigation